A number of structurally diverse antigens preferentially stimulate the synthesis of IgE antibodies, but no unifying principle has been proposed that explains the nature of isotype selection. In the present study, we show that common allergens present in bee venom, house dust mite emanations and parasite proteins induce mast cell and basophil degranulation and stimulate interleukin-4 synthesis, and secretion in the absence of antigen-specific IgE. These data point to a linkage between the initial activation of cells of the innate immune system and subsequent adaptive immune responses. They suggest that IgE-independent mast cell and basophil degranulation is predictive of potential allergenicity and can be evaluated by means of a cellular assay. Our study indicates that non-immunological degranulation by prototypic allergens, such as bee venom phospholipase A2 or proteases associated with house dust mite emanations, is critically dependent on enzymatic activity. These findings have potentially important implications for vaccine design in allergic and parasitic disease.
Antibodies of the immunoglobulin E isotype sensitize mast cells and basophils for antigen-induced mediator release by binding through the Fc portion to a high-affinity receptor (Fc epsilon R1, Ka = 10(9)M-1) on the cell surface causing the clinical manifestations of type I hypersensitivity. As the amino acid sequence of the human epsilon chain is now known, attempts have been made to map the Fc epsilon R1 binding site on IgE to a fragment smaller than Fc epsilon using proteolytic cleavage products, none of which proved to be active. Cleavage between the C epsilon 2 and C epsilon 3 domains released two inactive fragments, suggesting that the junction between these segments could be important in receptor binding. This region is protected against protease digestion in the rat IgE complex with the receptor of rat basophilic leukaemia cells. Here we report the mapping of the mast cell receptor binding site on human IgE to a sequence of 76 amino acids at the C epsilon 2/C epsilon 3 junction. Recombinant peptides containing this sequence inhibit passive sensitization of skin mast cells in vivo and sensitize mast cells to degranulation by anti-IgE in vitro almost as efficiently as a myeloma IgE. Fragments containing the separate domains are inactive. Additional sequences are required for rapid assembly of fragments into disulphide-linked dimers, suggesting that a single chain can form the active site. In a three-dimensional model of the human Fc epsilon, the two identical segments are far apart. Each folds to generate a cleft between the C epsilon 2 and C epsilon 3 domains on the surface of the Fc epsilon. The docking of IgE on to mast cells could take place within this cleft.
We have investigated the capacity of N- and C-terminally truncated and chimeric human (h) IgE-derived peptides to inhibit the binding of 125I-labeled hIgE, and to engage cell lines expressing high and low affinity receptors (Fc-epsilon-RI/II). The peptide sequence Pro343-Ser353 of the hC-epsilon-3 domain is common to all h-epsilon-chain peptides that recognize hFc-epsilon-RI. This region in IgE is homologous to the A loop in C-gamma-2 that engages the rat neonatal IgG receptor. Optimum Fc-epsilon-RI occupancy by hIgE occurs at pH 6.4, with a second peak at 7.4. N- or C-terminal truncation has little effect on the association rate of the ligands with this receptor. Dissociation markedly increases following C-terminal deletion, and hFc-epsilon-RI occupancy at pH 6.4 is diminished. His residue(s) in the C-terminal region of the epsilon-chain may thus contribute to the high affinity of interaction. Grafting the homologus rat epsilon-chain sequence into hIgE maintains hFc-epsilon-RI interaction without conferring binding to rat Fc-epsilon-RI. hFc-epsilon-RII interaction is lost, suggesting that these residues also contribute to hFc-epsilon RII binding. h-epsilon-chain peptides comprising only this sequence do not block hIgE/hFc-epsilon-RI interaction or engage the receptor. Therefore, sequences N- or C-terminal to this core peptide provide structures necessary for receptor recognition.
IgE antibodies are best known for their pathological role in allergy. The class-specific effector sites are located in the epsilon chains; these form covalent dimers via two cystine residues (Cys241 and Cys328) linking opposite C epsilon 2 domains. The nature and biological significance of the inter-epsilon chain disulfide-bond arrangement is unresolved. For structural and functional analysis site-specific mutations were introduced into the C epsilon 2 domain of recombinant human IgE. The introduction of an additional cyanogen bromide cleavage site (His246----Met) facilitated the identification of parallel disulfide bond pairing. This linkage was also confirmed for myeloma IgE PS by sequence determination of disulfide-linked C epsilon 2 dimers. Substitution of Cys241 and Cys328 by Ser does not destroy receptor binding, but reductive alkylation, or the replacement of Cys328 by Met, leads to loss of activity. This shows that covalent dimerization is not essential for IgE/receptor interaction and points to the importance of the structural integrity of the site surrounding Cys328, visualized in a new model of human Fc epsilon.
Immunoglobulin E (IgE) mediates its effector functions via the Fc region of the molecule. IgE binding to and subsequent aggregation of the high-affinity receptor (Fc epsilon RI) by allergen plays a pivotal role in type I hypersensitivity responses. Earlier studies implicated the C epsilon 2 and 3 interface and the A-B loop in C epsilon 3 in the IgE-Fc epsilon RI interaction. These regions and glycosylation sites in C epsilon 3 were now targeted by site-specific mutagenesis. IgE binding to Fc epsilon RI was compared with surface plasmon resonance (SPR) measurements, which assessed the binding of the soluble extracellular domain of Fc epsilon RI to IgE. Kinetic analysis based on a pseudo-first-order model agrees with previous determinations. A more refined SPR-based kinetic analysis suggests a biphasic interaction. A model-free empirical analysis, comparing the binding strength and kinetics of native and mutant forms of IgE, identified changes in the kinetics of IgE-Fc epsilon RI interaction. Conservative substitutions introduced into the A-B loop have a small effect on binding, suggesting that the overall conformation of the loop is important for the complementary interaction, but multiple sites across the C epsilon 3 domain may influence IgE-Fc epsilon RI interactions. Asn394 is essential for the generation of a functional IgE molecule in mammalian cells. A role of Pro333 in the maintenance of a constrained conformation at the interface between C epsilon 2-3 emerged by studying the functional consequences of replacing this residue by Ala and Gly. These substitutions cause a dramatic decrease in the ability of the ligand to mediate stimulus secretion coupling, although only small changes in the association and dissociation rates are observed. Understanding the molecular basis of this phenomenon may provide important information for the design of inhibitors of mast cell degranulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.