The polyketide chains of the two ansamycin antibiotics, ansatrienin (mycotrienin) and naphthomycin produced by Streptomyces collinus are assembled using 3-amino-5-hydroxybenzoic acid (AHBA) as a starter unit. The gene encoding AHBA synthase, an enzyme which catalyzes the final step of AHBA biosynthesis in the recently discovered aminoshikimate pathway, has been used to identify two separate antibiotic biosynthetic gene clusters in S. collinus. In one of these clusters, analysis of approximately 20 kb of contiguous sequence has revealed both a cluster of six genes presumed to play a role in the AHBA pathway and the beginning of a polyketide synthase (PKS) gene containing an acyl ACP ligase domain. This domain is likely responsible for loading AHBA onto the PKS. This gene cluster also contains chcA, encoding the enzyme 1-cyclohexenylcarbonyl CoA reductase, which is essential for the biosynthesis of the cyclohexanecarboxylic acid moiety of ansatrienin from shikimic acid, and a peptide synthetase. This gene cluster thus seems to control the biosynthesis of ansatrienin, which contains a side chain of N-cyclohexanecarbonyl-d-alanine esterified to the macrocyclic lactam backbone. In the putative naphthomycin biosynthetic gene cluster approximately 13 kb of contiguous sequence has revealed a second set of the genes required for AHBA biosynthesis. In addition the end of a polyketide synthase and a gene putatively involved in termination of the chain extension process, formation of an intramolecular amide bond between the AHBA nitrogen and the carboxyl group of the fully extended polyketide chain, have been identified. Thus, despite commonality in biosynthesis, the ansatrienin and naphthomycin biosynthetic gene clusters show clear organizational differences and carry separate sets of genes for AHBA biosynthesis.
Recently, we reported a novel congenital disorder of glycosylation (CDG-IIb) caused by severe deficiency of the glucosidase I. The enzyme cleaves the alpha1,2-glucose residue from the asparagine-linked Glc(3)-Man(9)-GlcNAc(2) precursor, which is crucial for oligosaccharide maturation. The patient suffering from this disease was compound-heterozygous for two mutations in the glucosidase I gene, a T-->C transition in the paternal allele and a G-->C transition in the maternal allele. This gives rise in the glucosidase I polypeptide to the substitution of Arg486 by Thr and Phe652 by Leu, respectively. Kinetic studies using detergent extracts from cultured fibroblasts showed that the glucosidase I activity in the patient's cells was < 1% of the control level, with intermediate values in the parental cells. No significant differences in the activities of other processing enzymes, including oligosaccharyltransferase, glucosidase II, and Man(9)-mannosidase, were observed. By contrast, the patient's fibroblasts displayed a two- to threefold higher endo-alpha1,2-mannosidase activity, associated with an increased level of enzyme-specific mRNA-transcripts. This points to the lack of glucosidase I activity being compensated for, to some extent, by increase in the activity of the pathway involving endo-alpha1,2-mannosidase; this would also explain the marked urinary excretion of Glc(3)-Man. Comparative analysis of [(3)H]mannose-labeled N-glycoproteins showed that, despite the dramatically reduced glucosidase I activity, the bulk of the N-linked carbohydrate chains (>80%) in the patient's fibroblasts appeared to have been processed correctly, with only approximately 16% of the N-glycans being arrested at the Glc(3)-Man(9-7)-GlcNAc(2) stage. These structural and enzymatic data provide a reasonable basis for the observation that the sialotransferrin pattern, which frequently depends on the type of glycosylation disorder, appears to be normal in the patient. The human glucosidase I gene contains four exons separated by three introns with exon-4 encoding for the large 64-kDa catalytic domain of the enzyme. The two base mutations giving rise to substitution of Arg486 by Thr and Phe652 by Leu both reside in exon-4, consistent with their deleterious effect on enzyme activity. Incorporation of either mutation into wild-type glucosidase I resulted in the overexpression of enzyme mutants in COS 1 cells displaying no measurable catalytic activity. The Phe652Leu but not the Arg486Thr protein mutant showed a weak binding to a glucosidase I-specific affinity resin, indicating that the two amino acids affect polypeptide folding and active site formation differently.
Pig liver oligosaccharyltransferase (OST), which is involved in the en bloc transfer of the Dol-PP-linked GlcNAc 2 -Man 9 -Glc 3 precursor on to asparagine residues in the Asn-XaaThr/Ser sequence, is highly stereospecific for the conformation of the 3-carbon atom in the hydroxy amino acid. Moreover, substitution of the hydroxy group by either SH as in cysteine, or NH 2 as in L L,Q Q-diamino-butanoic acid as reported previously [Bause, E. et al., Biochem. J. 312 (1995) 979^985], followed by the determination of the pH optimum for enzymatic activity, indicates that neither a negative nor a positive charge in the hydroxy amino acid position is tolerated by the enzyme. Binding of the threonine L L-methyl group by OST is also specific, with serine, L-threo-L L-hydroxynorvaline and L-L L-hydroxynorleucine containing tripeptides all bound much less efficiently than the threonine peptide itself. The data are interpreted in terms of a highly stereospecific hydrophobic binding pocket for the threonine CH 3 -CH(OH) group. ß
Glucosidase I is an endoplasmic reticulum (ER) type II membrane enzyme that cleaves the distal alpha1,2-glucose of the asparagine-linked GlcNAc2-Man9-Glc3 precursor. To identify sequence motifs responsible for ER localization, we prepared a protein chimera by transferring the cytosolic and transmembrane domain of glucosidase I to the luminal domain of Golgi-Man9-mannosidase. The GIM9 hybrid was overexpressed in COS 1 cells as an ER-resident protein that displayed alpha1,2-mannosidase activity, excluding the possibility that the glucosidase I-specific domains interfere with folding of the Man9-mannosidase catalytic domain. After substitution of the Args in position 7, 8, or 9 relative to the N-terminus by leucine, the GIM9 mutants were transported to the cell surface indicating that the (Arg)3 sequence functions as an ER-targeting motif. Cell surface expression was also observed after substitution of Arg-7 or Arg-8 but not Arg-9 in GIM9 by either lysine or histidine. Thus the side chain structure, including its positive charge, appears to be essential for signal function. Analysis of the N-linked glycans suggests that the (Arg)3 sequence mediates ER localization through Golgi-to-ER retrograde transport. Glucosidase I remained localized in the ER after truncation or mutation of the N-terminal (Arg)3 signal, in contrast to comparable GIM9 mutants. ER localization was also observed with an M9GI chimera consisting of the cytosolic and transmembrane domain of Man9-mannosidase and the glucosidase I catalytic domain. ER-specific targeting information must therefore be provided by sequence motifs contained within the glucosidase I luminal domain. This structural information appears to direct ER localization by retention rather than by retrieval, as concluded from N-linked Man9-GlcNAc2 being the major glycan released from the wild-type enzyme.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.