Here we describe a group of 14 patients carrying different X-autosome translocations and exhibiting phenotypes that demonstrate the range of alterations induced by such aberrations. All male carriers of an X-autosome translocation in our investigation group were infertile, whereas fertility in the female carriers was dependent on the position of the break-point in the X chromosome. Fertile women with translocation break-points outside of the critical region (Xq13-q26) in some cases passed on the translocation to their offspring. In balanced female carriers in our group, the normal X chromosome was usually inactivated, allowing full expression of genes on the translocated segments. In one case, disruption of the dystrophine gene in Xp21 led to the manifestation of Duchenne muscular dystrophy in a female carrier. Inactivation of the derivative X (Xt) in a balanced female carrier led to a partial monosomy of the autosome/disomy of the X chromosome and resulted in an aberrant phenotype. In unbalanced carriers, Xt is generally late-replicating/inactive, although failed spreading of inactivation to the autosomal segment often results in a partial trisomy, as evidenced by the case of an unbalanced translocation carrier in our group.
Glucosidase I, the first enzyme in the N-linked oligosaccharide processing pathway, cleaves the distal alpha 1,2-linked glucose residue from the Glc3-Man9-GlcNAc2 oligosaccharide precursor highly specifically. A human hippocampus cDNA library was screened against oligonucleotide probes, generated by PCR using primers derived from the amino acid sequences of tryptic peptides of pig liver glucosidase I. Two independent lambda clones were isolated which allowed the construction of a full-length glucosidase I cDNA of 2881 bp. This cDNA construct encodes, in a single open reading frame, a polypeptide of 834 amino acids corresponding to a molecular mass of 92 kDa. The 92-kDa protein contains a single N-glycosylation site of the Asn-Xaa-Thr/Ser type at Asn655, as well as a strongly hydrophobic sequence close to its N-terminus (amino acids 38-58) which, most likely, functions as a transmembrane anchor. The amino acid sequences of all tryptic peptides of the pig liver enzyme were found, with little deviation, within the coding sequence. This demonstrates the authenticity of the cDNA construct and the close evolutionary relationship between the enzymes from human hippocampus and pig liver. In contrast, the nucleotide and amino acid sequence revealed no homology with other processing enzymes cloned so far. Transfection of COS 1 cells with the glucosidase I cDNA construct resulted in overexpression (about fourfold) of enzymic activity, which was inhibited strongly by 1-deoxynojirimycin or N,N-dimethyl-deoxynojirimycin. The expressed enzyme, with a molecular mass of 95 kDa, is degraded by endoglycosidase H to a 93-kDa form, indicating that it carries a high-mannose oligosaccharide chain at Asn655. The presence of this glycan is in line with the localization of glucosidase I in the lumen of the endoplasmic reticulum, shown by immunofluorescence microscopy. The hydrophobicity profile as well as the removal by trypsin of an approximately 4-kDa polypeptide from the membrane-associated glucosidase I in intact microsomal structures, supports the view that the enzyme is a type-II transmembrane glycoprotein, which contains a short cytosolic tail of approximately 37 amino acids, followed by a single transmembrane domain and a large C-terminal catalytic domain located on the luminal side of the endoplasmic reticulum membrane.
Recently, we reported a novel congenital disorder of glycosylation (CDG-IIb) caused by severe deficiency of the glucosidase I. The enzyme cleaves the alpha1,2-glucose residue from the asparagine-linked Glc(3)-Man(9)-GlcNAc(2) precursor, which is crucial for oligosaccharide maturation. The patient suffering from this disease was compound-heterozygous for two mutations in the glucosidase I gene, a T-->C transition in the paternal allele and a G-->C transition in the maternal allele. This gives rise in the glucosidase I polypeptide to the substitution of Arg486 by Thr and Phe652 by Leu, respectively. Kinetic studies using detergent extracts from cultured fibroblasts showed that the glucosidase I activity in the patient's cells was < 1% of the control level, with intermediate values in the parental cells. No significant differences in the activities of other processing enzymes, including oligosaccharyltransferase, glucosidase II, and Man(9)-mannosidase, were observed. By contrast, the patient's fibroblasts displayed a two- to threefold higher endo-alpha1,2-mannosidase activity, associated with an increased level of enzyme-specific mRNA-transcripts. This points to the lack of glucosidase I activity being compensated for, to some extent, by increase in the activity of the pathway involving endo-alpha1,2-mannosidase; this would also explain the marked urinary excretion of Glc(3)-Man. Comparative analysis of [(3)H]mannose-labeled N-glycoproteins showed that, despite the dramatically reduced glucosidase I activity, the bulk of the N-linked carbohydrate chains (>80%) in the patient's fibroblasts appeared to have been processed correctly, with only approximately 16% of the N-glycans being arrested at the Glc(3)-Man(9-7)-GlcNAc(2) stage. These structural and enzymatic data provide a reasonable basis for the observation that the sialotransferrin pattern, which frequently depends on the type of glycosylation disorder, appears to be normal in the patient. The human glucosidase I gene contains four exons separated by three introns with exon-4 encoding for the large 64-kDa catalytic domain of the enzyme. The two base mutations giving rise to substitution of Arg486 by Thr and Phe652 by Leu both reside in exon-4, consistent with their deleterious effect on enzyme activity. Incorporation of either mutation into wild-type glucosidase I resulted in the overexpression of enzyme mutants in COS 1 cells displaying no measurable catalytic activity. The Phe652Leu but not the Arg486Thr protein mutant showed a weak binding to a glucosidase I-specific affinity resin, indicating that the two amino acids affect polypeptide folding and active site formation differently.
Glucosidase I is an endoplasmic reticulum (ER) type II membrane enzyme that cleaves the distal alpha1,2-glucose of the asparagine-linked GlcNAc2-Man9-Glc3 precursor. To identify sequence motifs responsible for ER localization, we prepared a protein chimera by transferring the cytosolic and transmembrane domain of glucosidase I to the luminal domain of Golgi-Man9-mannosidase. The GIM9 hybrid was overexpressed in COS 1 cells as an ER-resident protein that displayed alpha1,2-mannosidase activity, excluding the possibility that the glucosidase I-specific domains interfere with folding of the Man9-mannosidase catalytic domain. After substitution of the Args in position 7, 8, or 9 relative to the N-terminus by leucine, the GIM9 mutants were transported to the cell surface indicating that the (Arg)3 sequence functions as an ER-targeting motif. Cell surface expression was also observed after substitution of Arg-7 or Arg-8 but not Arg-9 in GIM9 by either lysine or histidine. Thus the side chain structure, including its positive charge, appears to be essential for signal function. Analysis of the N-linked glycans suggests that the (Arg)3 sequence mediates ER localization through Golgi-to-ER retrograde transport. Glucosidase I remained localized in the ER after truncation or mutation of the N-terminal (Arg)3 signal, in contrast to comparable GIM9 mutants. ER localization was also observed with an M9GI chimera consisting of the cytosolic and transmembrane domain of Man9-mannosidase and the glucosidase I catalytic domain. ER-specific targeting information must therefore be provided by sequence motifs contained within the glucosidase I luminal domain. This structural information appears to direct ER localization by retention rather than by retrieval, as concluded from N-linked Man9-GlcNAc2 being the major glycan released from the wild-type enzyme.
Man,-mannosidase, one of three different al,2-exo-mannosidases known to be involved in N-linked oligosaccharide processing, has been cloned in AgtlO, using a mixed-primed pig liver cDNA library. Three clones were isolated which allowed the reconstruction of a 2731-bp full-length cDNA. The cDNA construct contained a single open reading frame of 1977 bp, encoding a 659-residue polypeptide with a molecular mass of =73 kDa. The Man,-mannosidase specificity of the cDNA construct was verified by the observation that all peptide sequences derived from a previously purified, catalytically active 49-kDa fragment were found within the coding region. The N-terminus of the 49-kDa fragment aligns with amino acid 175 of the translated cDNA, indicating that the catalytic activity is associated with the C-terminus.Transfection of COS 1 cells with the Man,-mannosidase cDNA gave rise to a > 30-fold over-expression of a 73-kDa protein whose catalytic properties, including substrate specificity, susceptibility towards amannosidase inhibitors and metal ion requirements, were similar to those of the 49-kDa enzyme fragment. Thus deletion of 174 N-terminal amino acids in the 73-kDa protein appears to have only marginal influence on the catalytic properties.Structural and hydrophobicity analysis of the coding region, as well as the results from tryptic degradation studies, point to pig liver Man,-mannosidase being a non-glycosylated type-I1 transmembrane protein. This protein contains a 48-residue cytosolic tail followed by a 22-residue membrane anchor (which probably functions as internal and non-cleavable signal sequence), a lumenal = 100-residue-stem region and a large 49-kDa C-terminal catalytic domain. As shown by immuno-fluorescence microscopy, the pig liver enzyme expressed in COS 1 cells, is resident in the endoplasmic reticulum, in contrast to COS 1 Man,-mannosidase from human kidney which is Golgi-located [Bieberich, E. & Bause, E. (1995) E m J. Biochem. 233, 644-6491. Localization of the porcine enzyme in the endoplasmic reticulum is consistent with immuno-electron-microscopic studies using pig hepatocytes. The different intracellular distribution of pig liver and human kidney Man,-mannosidase is, therefore, enzyme-specific rather than a COS-1-cell-typical phenomenon. Since we oberserve = 81 % sequence similarity between the two amannosidases, we deduce that the localization in either endoplasmic reticulum or Golgi is likely to be sequence-dependent.Keywords: Man,-mannosidase; cDNA cloning; COS 1 cell expression; type I1 membrane protein; endoplasmic reticulum localization.Re-modelling of the asparagine-linked Glc,-Man,-GlcNAc, precursor to give the mature high-mannose or complex-type sugar chain, takes place through a complex sequence of reactions involving a-glycosidases and glycosyltransferases [ 1, 21. Processing begins with the removal of three glucose residues by glucosidase I and 11, followed by cleavage of four al,2-linked mannose residues from Man,-GlcNAc,. The resulting Man,-GlcNAc, intermediate may then be modified...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.