Perception sensors such as camera, radar, and lidar have gained considerable popularity in the automotive industry in recent years. In order to reach the next step towards automated driving it is necessary to implement fault diagnosis systems together with suitable mitigation solutions in automotive perception sensors. This is a crucial prerequisite, since the quality of an automated driving function strongly depends on the reliability of the perception data, especially under adverse conditions. This publication presents a systematic review on faults and suitable detection and recovery methods for automotive perception sensors and suggests a corresponding classification schema. A systematic literature analysis has been performed with focus on lidar in order to review the state-of-the-art and identify promising research opportunities. Faults related to adverse weather conditions have been studied the most, but often without providing suitable recovery methods. Issues related to sensor attachment and mechanical damage of the sensor cover were studied very little and provide opportunities for future research. Algorithms, which use the data stream of a single sensor, proofed to be a viable solution for both fault detection and recovery.
Sensor models provide the required environmental perception information for the development and testing of automated driving systems in virtual vehicle environments. In this article, a configurable sensor model architecture is introduced. Based on methods of model-based systems engineering (MBSE) and functional decomposition, this approach supports a flexible and continuous way to use sensor models in automotive development. Modeled sensor effects, representing single-sensor properties, are combined to an overall sensor behavior. This improves reusability and enables adaptation to specific requirements of the development. Finally, a first practical application of the configurable sensor model architecture is demonstrated, using two exemplary sensor effects: the geometric field of view (FoV) and the object-dependent FoV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.