To determine if changes in fingerprint infrared spectra linear with age can be found, partial least squares (PLS1) regression of 155 fingerprint infrared spectra against the person's age was constructed. The regression produced a linear model of age as a function of spectrum with a root mean square error of calibration of less than 4 years, showing an inflection at about 25 years of age. The spectral ranges emphasized by the regression do not correspond to the highest concentration constituents of the fingerprints. Separate linear regression models for old and young people can be constructed with even more statistical rigor. The success of the regression demonstrates that a combination of constituents can be found that changes linearly with age, with a significant shift around puberty.
Two virtual instruments have been constructed in our physical chemistry laboratory. The first is a virtual autotitrator based on an Orion pH meter, a 386 CPU computer, and a homemade stepper-motor driven syringe. A graphical user interface written in Visual Basic allows the user to control the system with simple mouse clicks. The program automatically set up a link to a Quattro Pro for Windows spreadsheet and puts each pH value and number of steps into the proper spreadsheet cells. The user manipulates the data in the spreadsheet to generate first and second derivative curves to determine the endpoint, and produce the graphical output. The second is a stopped-flow spectrometer interfaced to a 386 CPU computer which uses a virtual oscilloscope program written in Visual Basic to collect and display the data. Students use a spreadsheet to manipulate the data and compare fits to simple models.
Method development and validation studies have been completed on an assay that will allow the determination of 2,4-dichlorophenoxyacetic acid (2,4-D) in human urine. The accurate determination of 2,4-D in urine is an important factor in monitoring worker and population exposure. These studies successfully validated a method for the detection of 2,4-D in urine at a limit of quantitation (LOQ) of 5.00 ppb (parts per billion) using gas chromatography with mass selective detection (GC/MSD). The first study involved the determination of 2,4-D in control human urine and urine samples fortified with 2,4-D. Due to chromatographic interference, a second study was conducted using 14C-2,4-D to verify the recoverability of 2,4-D from human urine at low levels using the GC/MSD method. The second study supports the results of the original data. The 2,4-D was extracted from human urine using a procedure involving hydrolysis using potassium hydroxide, followed by a liquid-liquid extraction into methylene chloride. The extracted samples were derivatized with diazomethane. The methylated fraction was analyzed by GC/MSD. Quantitation was made by comparison to methylated reference standards of 2,4-D. Aliquots fortified at 5-, 50-, and 500-ppb levels were analyzed. The overall mean recovery for all fortified samples was 90.3% with a relative standard deviation of 14.31%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.