Two isolates of the murine hepatitis virus (MHV) strain JHM, which differed in their ability to express the nonstructural gene product ns2, were characterized. The MHV Wb3 isolate encodes a 30,000-molecular-weight ns2 protein that can be readily detected in infected cells by using a specific monoclonal antibody, MAb 2A. The MHV Wbl isolate is a deletion mutant that lacks a functional ns2 gene and the transcriptional signals required for the synthesis of an ns2 mRNA. However, there are no obviously significant differences in the growth of the MHV Wbl and MHV Wb3 isolates in continuous cell lines or in the synthesis of viral mRNAs or proteins in infected cells. These results demonstrate that the ns2 gene product is not essential for MHV replication in transformed murine cells and suggests that the function of the ns2 gene may only be manifest in vivo.
Analysis of the tropical marine sponge Axinella carteri afforded six unusual alkaloids, including the new brominated guanidine derivative 3-bromo-hymenialdisine. The structure elucidation of the new alkaloid is described. The alkaloid patterns of sponges collected in Indonesia or in the Philippines were shown to be qualitatively identical suggesting de novo synthesis by the sponge or by endosymbiontic microorganisms rather than uptake by filterfeeding. All alkaloids were screened for insecticidal activity as well as for cytotoxicity. The guanidine alkaloids hymenialdisine and debromohymenialdisine exhibited insecticidal activity towards neonate larvae of the polyphagous pest insect Spodoptera littoralis (LD50s of 88 and 125 ppm, respectively), when incorporated into artificial diet and offered to the larvae in a chronic feeding bioassay. The remaining alkaloids, including the new compound, were inactive in this bioassay. Cytotoxicity was studied in vitro using L5178y mouse lymphoma cells. Debromohymenialdisine was again the most active compound (ED50 1.8 μg/ml) followed by hymenialdisine and 3-bromohymenialdisine, which were essentially equitoxic and exhibited ED50s of 3.9 μg/ml in both cases. The remaining alkaloids were inactive against this cell line
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.