Abstract:We conducted a survey of the epiphyte flora growing on the stilt palm Socratea exorrhiza in a primary lowland rain forest in Panama by means of a canopy crane. For each palm in a 0.9-ha plot, we determined diameter at breast height, tree height, per cent bryophyte cover and the number, identity and attachment site of all vascular epiphytes. The 118 palm trees hosted a total of 701 epiphytes and hemi-epiphytes, belonging to 66 species. Trees were estimated to be c. 20 y old before colonization with vascular epiphytes began. Epiphyte species were highly clumped and segregated along the vertical axis of the trunk. Sequential colonization led to an increased number of species and individuals as the tree grows. Epiphytes were associated with bryophyte patches much more than expected by chance, but no species seemed to depend upon them for establishment. The influence of tree size, age and bryophyte cover on the composition of the epiphyte community are discussed.
Summary. Photosynthetic performance of Norway spruceneedles [Picea abies (L.) Karst.] was measured over a 1-year period. The trees grew in an area of heavy air pollution and forest decline on a mountain ridge in the eastern Ore Mountains (Czech Republic). Photosynthetic capacity, as well as light use efficiency, decreased dramatically with time, starting in July (2 months after bud-break) to finally reach zero (respiration only) by February of the following year. Two months later all needles from upper crown parts were shed. Needles from lower crown parts, on the other hand, were undamaged. The chlorophyll and Mg content decreased transiently during the cold season, with Mg reaching deficiency thresholds during winter. However, total sulfur, as well as organic and sulfate S increased with time. The increase was higher in needles from the upper parts of the crown, which were exposed to windy air throughout the year, than in the lower parts of the crown, which were covered by grass during summer and by snow during most of the winter.
Clones of Norway spruce (Picea abies L.) were grown for several years on an altitudinal gradient (1750 m, 1150 m and 800 m above sea level) to study the effects of environmental × genetic interactions on growth and foliar metabolites (protein, pigments, antioxidants). Clones at the tree line showed 4.3-fold lower growth rates and contained 60% less chlorophyll (per gram of dry matter) than those at valley level. The extent of growth reduction was clone-dependent. The mortality of the clones was low and not altitude-dependent. At valley level, but not at high altitude, needles of mature spruce trees showed lower pigment and protein concentrations than clones. In general, antioxidative systems in needles of the mature trees and young clones did not increase with increasing altitude. Needles of all trees at high altitude showed higher concentrations of dehydroascorbate than at lower altitudes, indicating higher oxidative stress. In one clone, previously identified as sensitive to acute ozone doses, this increase was significantly higher and the growth reduction was stronger than in the other genotypes. This clone also displayed a significant reduction in glutathione reductase activity at high altitude. These results suggest that induction of antioxidative systems is apparently not a general prerequisite to cope with altitude in clones whose mother plants originated from higher altitudes (about 650-1100 m above sea level, Hercycnic-Carpathian distribution area), but that the genetic constitution for maintenance of high antioxidative protection is important for stress compensation at the tree line.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.