BackgroundFor reliable assessment of ventilation inhomogeneity, multiple-breath washout (MBW) systems should be realistically validated. We describe a new lung model for in vitro validation under physiological conditions and the assessment of a new nitrogen (N2)MBW system.MethodsThe N2MBW setup indirectly measures the N2 fraction (FN2) from main-stream carbon dioxide (CO2) and side-stream oxygen (O2) signals: FN2 = 1−FO2−FCO2−FArgon. For in vitro N2MBW, a double chamber plastic lung model was filled with water, heated to 37°C, and ventilated at various lung volumes, respiratory rates, and FCO2. In vivo N2MBW was undertaken in triplets on two occasions in 30 healthy adults. Primary N2MBW outcome was functional residual capacity (FRC). We assessed in vitro error (√[difference]2) between measured and model FRC (100–4174 mL), and error between tests of in vivo FRC, lung clearance index (LCI), and normalized phase III slope indices (Sacin and Scond).ResultsThe model generated 145 FRCs under BTPS conditions and various breathing patterns. Mean (SD) error was 2.3 (1.7)%. In 500 to 4174 mL FRCs, 121 (98%) of FRCs were within 5%. In 100 to 400 mL FRCs, the error was better than 7%. In vivo FRC error between tests was 10.1 (8.2)%. LCI was the most reproducible ventilation inhomogeneity index.ConclusionThe lung model generates lung volumes under the conditions encountered during clinical MBW testing and enables realistic validation of MBW systems. The new N2MBW system reliably measures lung volumes and delivers reproducible LCI values.
Suboptimal asthma control is common despite modern asthma therapy. The degree of peripheral airway involvement remains unclear and poor medication delivery to these regions might be a contributing reason for this failure in obtaining adequate symptom control. A cohort of 196 adults (median (range) age 44 (18-61) years, 109 females, 54 ex-smokers, six current smokers) with physician-diagnosed asthma were recruited from primary care. Subjects were characterized clinically by interviews, questionnaires, skin prick tests (SPT) and blood eosinophil counts. Lung function was assessed by spirometry, impulse oscillometry (IOS) and nitrogen multiple breath washout (N2 MBW). IOS assessed peripheral airway resistance (FDR, frequency dependence of resistance). N2 MBW assessed global ventilation inhomogeneity (LCI, lung clearance index), specific indices of peripheral airway function (Scond × VT and Sacin × VT; VT, tidal volume), and inter-regional inhomogeneity (specific ventilation ratio). Never-smoking healthy cohorts of 158 and 400 adult subjects provided local reference values for IOS and N2 MBW variables, respectively. Peripheral airway dysfunction was detected in 31% (FDR or specific ventilation ratio) to 47% (Scond x VT) of subjects. Risk factors for peripheral airway dysfunction were identified. Among subjects with low FEV1 and either positive smoking history and/or blood eosinophilia (>4.0%), 63% had abnormality across all peripheral airway outcomes, whilst only one subject was completely normal. Abnormal peripheral airway function was present in a large proportion of adult asthmatics at baseline. Reduced FEV1, a positive smoking history, and/or blood eosinophilia identified "a small airway asthma subtype" that might benefit from peripheral airway targeted therapy.
The aim of this study was to identify predictors of torsades de pointes (TdP) in patients with atrial fibrillation (AF) or flutter exposed to the Class III antiarrhythmic drug almokalant. TdP can be caused by drugs that prolong myocardial repolarization. One hundred patients received almokalant infusion during AF (infusion 1) and 62 of the patients during sinus rhythm (SR) on the following day (infusion 2). Thirty-two patients converted to SR. Six patients developed TdP. During AF, T wave alternans was more common prior to infusion (baseline) in patients developing TdP (50% vs 4%, P < 0.01). After 30 minutes of infusion 1, the TdP patients exhibited a longer QT interval (493 +/- 114 vs 443 +/- 54 ms [mean +/- SD], P < 0.01), a larger precordial QT dispersion (50 +/- 74 vs 27 +/- 26 ms, P < 0.05), and a lower T wave amplitude (0.12 +/- 0.21 vs 0.24 +/- 0.16 mV, P < 0.01). After 30 minutes of infusion 2, they exhibited a longer QT interval (672 +/- 26 vs 489 +/- 74 ms, P < 0.001), a larger QT dispersion in precordial (82 +/- 7 vs 54 +/- 52 ms, P < 0.01) and extremity leads (163 +/- 0 vs 40 +/- 34 ms, P < 0.001), and T wave alternans was more common (100% vs 0%, P < 0.001). Risk factors for development of TdP were at baseline: female gender, ventricular extrasystoles, and treatment with diuretics; and, after 30 minutes of infusion: sequential bilateral bundle branch block, ventricular extrasystoles in bigeminy, and a biphasic T wave. Patients developing TdP exhibited early during almokalant infusion a pronounced QT prolongation, increased QT dispersion, and marked morphological T wave changes.
Imaging studies describe significant ventilation defects across a wide range of cystic fibrosis (CF) related lung disease severity. These are unfortunately poorly reflected by phase III slope analysis-derived Scond and Sacin from multiple-breath washout (MBW). Methodology extending previous two-lung compartment model-based analysis is presented describing size and function of fast- and slow-ventilating lung compartments from nitrogen (N2) MBW and correlation to obstructive lung disease severity. In 37 CF subjects (forced expiratory volume in 1 s [FEV1] mean [SD] 84.8 [19.9] % predicted; abnormal lung clearance index [LCI] in 36/37, range 7.28-18.9) and 74 matched healthy controls, volume and specific ventilation of both fast and slowly ventilated lung compartments were derived from N2-based MBW with commercial equipment. In healthy controls lung emptying was characterized by a large compartment constituting 75.6 (8.4)% of functional residual capacity (FRC) with a specific ventilation (regional alveolar tidal volume/regional lung volume) of 13.9 (3.7)% and a small compartment with high specific ventilation (48.4 [15.7]%). In CF the slowly ventilated lung compartment constituted 51.9(9.1)% of FRC, with low specific ventilation of 5.3 (2.4)%. Specific ventilation of the slowly ventilated lung compartment showed stronger correlation with LCI (r2 = 0.70, P < 0.001) vs. Sacin (r2 = 0.44, P < 0.001) or Scond (no significant correlation). Overventilation of the fast lung compartment was no longer seen in severe CF lung disease. Magnitude and function of under- and overventilated lung volumes can be derived from routine N2 MBW in CF. Reported values agree with previous modelling-derived estimates of impaired ventilation and offer improved correlation to disease severity, compared with SnIII analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.