Although temporal heterogeneity is a well-accepted driver of biodiversity, effects of interannual variation in land-use intensity (LUI) have not been addressed yet. Additionally, responses to land use can differ greatly among different organisms; therefore, overall effects of land-use on total local biodiversity are hardly known. To test for effects of LUI (quantified as the combined intensity of fertilization, grazing, and mowing) and interannual variation in LUI (SD in LUI across time), we introduce a unique measure of whole-ecosystem biodiversity, multidiversity. This synthesizes individual diversity measures across up to 49 taxonomic groups of plants, animals, fungi, and bacteria from 150 grasslands. Multidiversity declined with increasing LUI among grasslands, particularly for rarer species and aboveground organisms, whereas common species and belowground groups were less sensitive. However, a high level of interannual variation in LUI increased overall multidiversity at low LUI and was even more beneficial for rarer species because it slowed the rate at which the multidiversity of rare species declined with increasing LUI. In more intensively managed grasslands, the diversity of rarer species was, on average, 18% of the maximum diversity across all grasslands when LUI was static over time but increased to 31% of the maximum when LUI changed maximally over time. In addition to decreasing overall LUI, we suggest varying LUI across years as a complementary strategy to promote biodiversity conservation.
Trait‐based approaches are widespread throughout ecological research as they offer great potential to achieve a general understanding of a wide range of ecological and evolutionary mechanisms. Accordingly, a wealth of trait data is available for many organism groups, but this data is underexploited due to a lack of standardization and heterogeneity in data formats and definitions. We review current initiatives and structures developed for standardizing trait data and discuss the importance of standardization for trait data hosted in distributed open‐access repositories. In order to facilitate the standardization and harmonization of distributed trait datasets by data providers and data users, we propose a standardized vocabulary that can be used for storing and sharing ecological trait data. We discuss potential incentives and challenges for the wide adoption of such a standard by data providers. The use of a standard vocabulary allows for trait datasets from heterogeneous sources to be aggregated more easily into compilations and facilitates the creation of interfaces between software tools for trait‐data handling and analysis. By aiding decentralized trait‐data standardization, our vocabulary may ease data integration and use of trait data for a broader ecological research community and enable global syntheses across a wide range of taxa and ecosystems.
6 1. Trait-based approaches are widespread throughout ecological research, offering great 7 potential for trait data to deliver general and mechanistic conclusions. Accordingly, 8 a wealth of trait data is available for many organism groups, but, due to a lack of 9 standardisation, these data come in heterogeneous formats.
The increasing amount of publicly available research data provides the opportunity to link and integrate data in order to create and prove novel hypotheses, to repeat experiments or to compare recent data to data collected at a different time or place. However, recent studies have shown that retrieving relevant data for data reuse is a time-consuming task in daily research practice. In this study, we explore what hampers dataset retrieval in biodiversity research, a field that produces a large amount of heterogeneous data. In particular, we focus on scholarly search interests and metadata, the primary source of data in a dataset retrieval system. We show that existing metadata currently poorly reflect information needs and therefore are the biggest obstacle in retrieving relevant data. Our findings indicate that for data seekers in the biodiversity domain environments, materials and chemicals, species, biological and chemical processes, locations, data parameters and data types are important information categories. These interests are well covered in metadata elements of domain-specific standards. However, instead of utilizing these standards, large data repositories tend to use metadata standards with domain-independent metadata fields that cover search interests only to some extent. A second problem are arbitrary keywords utilized in descriptive fields such as title, description or subject. Keywords support scholars in a full text search only if the provided terms syntactically match or their semantic relationship to terms used in a user query is known.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.