For reduced order models (ROMs) of fluid flows, we investigate theoretically and computationally whether differentiation and ROM spatial filtering commute, i.e., whether the commutation error (CE) is nonzero. We study the CE for the Laplacian and two ROM filters: the ROM projection and the ROM differential filter. Furthermore, when the CE is nonzero, we investigate whether it has any significant effect on ROMs that are constructed by using spatial filtering. As numerical tests, we use the Burgers equation with viscosities ν = 10 −1 and ν = 10 −3 and a 2D flow past a circular cylinder at Reynolds numbers Re = 1 and Re = 100. Our investigation shows that: (i) the CE exists; and (ii) the CE has a significant effect on ROM development for low Reynolds numbers, but not so much for higher Reynolds numbers.
In this paper, we resolve several long standing issues dealing with optimal pointwise in time error bounds for proper orthogonal decomposition (POD) reduced order modeling of the heat equation. In particular, we study the role played by difference quotients (DQs) in obtaining reduced order model (ROM) error bounds that are optimal with respect to both the time discretization error and the ROM discretization error. When the DQs are not used, we prove that both the ROM projection error and the ROM error are suboptimal. When the DQs are used, we prove that both the ROM projection error and the ROM error are optimal. The numerical results for the heat equation support the theoretical results.
In this paper, we resolve several long-standing issues dealing with optimal pointwise in time error bounds for proper orthogonal decomposition (POD) reduced order modeling of the heat equation. In particular, we study the role played by difference quotients (DQs) in obtaining reduced order model (ROM) error bounds that are optimal with respect to both the time discretization error and the ROM discretization error. When the DQs are not used, we prove that both the POD projection error and the ROM error are suboptimal. When the DQs are used, we prove that both the POD projection error and the ROM error are optimal. The numerical results for the heat equation support the theoretical results.
We perform a theoretical and numerical investigation of the time-average of energy exchange among modes of Reduced Order Models (ROMs) of fluid flows. We are interested in the statistical equilibrium problem, and especially in the possible forward and backward average transfer of energy among ROM basis functions (modes). We consider two types of ROM modes: eigenfunctions of the Stokes operator and Proper Orthogonal Decomposition (POD) modes. We prove analytical results for both types of ROM modes and we highlight the differences between them. We also investigate numerically whether the time-average energy exchange between POD modes is positive. To this end, we utilize the one-dimensional Burgers equation as a simplified mathematical model, which is commonly used in ROM tests. The main conclusion of our numerical study is that, for long enough time intervals, the time-average energy exchange from low index POD modes to high index POD modes is positive, as predicted by our theoretical results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.