The electronic structure of Pr1−xCaxMnO3 has been investigated using a combination of firstprinciples calculations, X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), electron-energy loss spectroscopy (EELS), and optical absorption. The full range of compositions, x = 0, 1/2, 1, and a variety of magnetic orders have been covered. Jahn-Teller as well as Zener polaron orders are considered. The free parameters of the local hybrid density functionals used in this study has been determined by comparison with measured XPS spectra. A model Hamiltonian, valid for the entire doping range, has been extracted. A simple local-orbital picture of the electronic structure for the interpretation of experimental spectra is provided. The comparison of theoretical calculations and different experimental spectra provide a detailed and consistent picture of the electronic structure. The large variations of measured optical absorption spectra are traced back to the coexistence of magnetic orders respectively to the occupation of local orbitals. A consistent treatment of the Coulomb interaction indicate a partial cancellation of Coulomb parameters and support the dominance of the electron-phonon coupling.
Resonant inelastic X-ray scattering (RIXS) is a promising method for elucidating detailed electronic structure of materials in a broad range of chemical and physical applications. Here, we use the fine fluorescence energy resolution of a RIXS spectrometer to obtain various proxies of the Mn-L edge X-ray absorption spectra (XAS) of the perovskite La0.6Sr0.4MnO3 (LSMO) as a model catalyst for the oxygen evolution reaction (OER) and evaluate the suitability for in situ surface studies of this electrocatalyst. We conclude that the inverse partial fluorescence yield (IPFY) of the O 2p–1s transition and the partial fluorescence yield of the 3s–2p transition (3s-PFY) are most suitable for determining changes at the surface of the perovskite because distortions at grazing incidence measurements are low. In particular, the negligible angular dependence of the 3s-PFY spectra can be perfectly simulated by using a fluorescence model in the thin sample limit which is justified by low reabsorption of 3s photons. Remarkably, the 3s-PFY reveals an influence of water vapor on the electronic reconstruction of the LSMO surface. Thus, our work paves the road for quantitative distortion-free X-ray spectroscopy of transition metal oxide surfaces under in situ conditions, which is needed to understand fundamental chemical processes such as corrosion and catalysis.
SummaryAfter a general introduction into the Shockley theory of current voltage (J–V) characteristics of inorganic and organic semiconductor junctions of different bandwidth, we apply the Shockley theory-based, one diode model to a new type of perovskite junctions with polaronic charge carriers. In particular, we studied manganite–titanate p–n heterojunctions made of n-doped SrTi1− yNbyO3, y = 0.002 and p-doped Pr1− xCaxMnO3, x = 0.34 having a strongly correlated electron system. The diffusion length of the polaron carriers was analyzed by electron beam-induced current (EBIC) in a thin cross plane lamella of the junction. In the J–V characteristics, the polaronic nature of the charge carriers is exhibited mainly by the temperature dependence of the microscopic parameters, such as the hopping mobility of the series resistance and a colossal electro-resistance (CER) effect in the parallel resistance. We conclude that a modification of the Shockley equation incorporating voltage-dependent microscopic polaron parameters is required. Specifically, the voltage dependence of the reverse saturation current density is analyzed and interpreted as a voltage-dependent electron–polaron hole–polaron pair generation and separation at the interface.
Mixed-organic-cation perovskite absorbers as formamidinium doped methylammonium tin iodine $$(\text {NH}_2\text {CH})_{1-{x}}(\text {CH}_3\text {NH}_3)_x\text {SnI}_3$$ ( NH 2 CH ) 1 - x ( CH 3 NH 3 ) x SnI 3 ($$x\le 1$$ x ≤ 1 ) can provide a pathway to highly efficient lead-free solar cells. Although this class of materials is known to be severely susceptible to degradation, induced among others by enhanced temperatures, humidity and illumination, an improved layer quality in view of crystal size and homogeneity is the key to diminish or even to block certain degradation channels. In this work, we present the fabrication of fully tin-based perovskites via pulsed laser deposition. The morphology is analyzed for different deposition energies and temperatures to find the optimum process window. The thin films already reveal crystalline structure at room temperature, while they are smooth and homogeneous above a critical thickness for carefully adapted deposition parameters. In contrast to the assumption that at elevated temperatures, the crystallinity is improved, and we find that the films reveal a strong organic depletion and simultaneously tin enrichment. As a measure for their suitability to be employed as photovoltaic absorbers, the band gap of the differently doped perovskites is estimated by spectroscopic ellipsometry in the range of 1.3 to 1.4 eV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.