The permeability and capillary entry pressure of chalk reservoirs are controlled by their porosity and specific surface area. Measured permeabilities are in the range 0.025–5.3 mD and are successfully predicted by use of the Kozeny equation. In this paper we focus on the factors that control specific surface area. Fifty-nine Tor and Ekofisk Formation chalk samples from five North Sea chalk reservoirs were investigated. All contain quartz and clay minerals, most commonly kaolinite and smectite, with trace amounts of illite. The contents of calcite and quartz are inversely correlated and both are independent of the content of clays. We thus infer that the main part of the silica is of biogenic origin.
The specific surface area of the chalk is mainly controlled by clay content. The specific surface area of calcite is determined by the individual calcite crystal size and is not dependent on stratigraphic variations in fossil size. The specific surface area of calcite increases with increasing content of quartz and clays. These constituents may inhibit recrystallization of calcite and thus preserve high specific surface area. Our data accord with the following specific surface areas (m
2
g
−1
): calcite between 0.5 and 3.5, quartz about 5, kaolinite about 15, and smectite about 60.
A B S T R A C TWe have studied 56 unfractured chalk samples of the Upper Cretaceous Tor Formation of the Dan, South Arne and Gorm Fields, Danish North Sea. The samples have porosities of between 14% and 45% and calcite content of over 95%. The ultrasonic compressional-and shear-wave velocities (V P and V S ) for dry and water-saturated samples were measured at up to 75 bar confining hydrostatic pressure corresponding to effective stress in the reservoir. The porosity is the main control of the ultrasonic velocities and therefore of the elastic moduli. The elastic moduli are slightly higher for samples from the South Arne Field than from the Dan Field for identical porosities. This difference may be due to textural differences between the chalk at the two locations because we observe that large grains (i.e. filled microfossils and fossil fragments) that occur more frequently in samples from the Dan Field have a porosity-reducing effect and that samples rich in large grains have a relatively low porosity for a given P-wave modulus. The clay content in the samples is low and is mainly represented by either kaolinite or smectite; samples with smectite have a lower P-wave modulus than samples with kaolinite at equal porosity. We find that ultrasonic V P and V S of dry chalk samples can be satisfactorily estimated with Gassmann's relationships from data for water-saturated samples. A pronounced difference between the V P /V S ratios for dry and water-saturated chalk samples indicates promising results for seismic amplitude-versus-offset analyses.
Chalk samples from Dan, Tyra, South Arne, Valhall and Ekofisk fields were collected from hydrocarbon-bearing intervals in the Cretaceous Tor and Palaeogene Ekofisk formations in the central North Sea. The samples were compared with respect to stable isotope ratios, lithotype, texture, porosity, permeability, capillary entry pressure, as well as the dynamic elastic Biot's coefficient and Poisson's ratio. The depositional texture and present grain-size distribution were quantified by petrographic image analysis. Oxygen isotope ratio and Biot's coefficient were used as indicators of cementation.
Porosity varies more than 20 porosity units within each hydrocarbon field and is controlled by three parameters: (1) sorting as expressed by Dunham texture, so that mudstones tend to have highest porosity and packstones the lowest; (2) sorting of the carbonate mud, where a mixture of clay-size chalk particles and silicates tend to reduce porosity; and (3) by pore-filling cementation. The relative significance of these parameters varies with field and formation. The presence of chalk clasts as an indicator of re-deposited chalk seems to have no relationship to porosity. Permeability and capillary entry pressure depend on porosity and mineral content as expressed in specific surface. Prediction of permeability and capillary entry pressure may be aided by information on carbonate content or on Poisson's ratio.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.