Initial partial or complete relief of VM complaints after percutaneous treatment is expected in 58% of patients, irrespective of VM size or classification. These results were durable over a 5-year follow-up period.
Reliable prediction of disease status is a major challenge in managing gastroenteropancreatic neuroendocrine tumors (GEP-NETs). The aim of the study was to validate the NETest®, a blood molecular genomic analysis, for predicting the course of disease in individual patients compared to chromogranin A (CgA). NETest® score (normal ≤20%) and CgA level (normal <100 µg/L) were measured in 152 GEP-NETs. The median follow-up was 36 (4–56) months. Progression-free survival was blindly assessed (Response Evaluation Criteria in Solid Tumors [RECIST] version 1.1). Optimal cutoffs (area under the receiver operating characteristic curve [AUC]), odds ratios, as well as negative and positive predictive values (NPVs/PPVs) were calculated for predicting stable disease (SD) and progressive disease (PD). Of the 152 GEP-NETs, 86% were NETest®-positive and 52% CgA-positive. NETest® AUC was 0.78 versus CgA 0.73 (<i>p</i> = ns). The optimal cutoffs for predicting SD/PD were 33% for the NETest® and 140 µg/L for CgA. Multivariate analyses identified NETest® as the strongest predictor for PD (odds ratio: 5.7 [score: 34–79%]; 12.6 [score: ≥80%]) compared to CgA (odds ratio: 3.0), tumor grade (odds ratio: 3.1), or liver metastasis (odds ratio: 7.7). The NETest® NPV for SD was 87% at 12 months. The PPV for PD was 47 and 64% (scores 34–79% and ≥80%, respectively). NETest® metrics were comparable in the watchful waiting, treatment, and no evidence of disease (NED) subgroups. For CgA (>140 ng/mL), NPV and PPV were 83 and 52%. CgA could not predict PD in the watchful waiting or NED subgroups. The NETest® reliably predicted SD and was the strongest predictor of PD. CgA had lower utility. The NETest® anticipates RECIST-defined disease status up to 1 year before imaging alterations are apparent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.