This finding justifies the use of the plants in wound healing and their potential activity against wound-causing bacteria. Their toxicity level and antimicrobial activity with different extraction solvents should further be studied to use them as sources and templates for the synthesis of drugs to control wound and other disease-causing bacteria.
Severe cardiovascular complications can occur in coronavirus disease of 2019 (COVID-19) patients. Cardiac damage is attributed mostly to the aberrant host response to acute respiratory infection. However, direct infection of cardiac tissue by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) also occurs. We examined here the cardiac tropism of SARS-CoV-2 in spontaneously beating human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). These cardiomyocytes express the angiotensin-converting enzyme 2 (ACE2) receptor but not the transmembrane protease serine 2 (TMPRSS2) that mediates spike protein cleavage in the lungs. Nevertheless, SARS-CoV-2 infection of hiPSC-CMs was prolific: viral transcripts accounted for about 88% of total mRNA. In the cytoplasm of infected hiPSC-CMs, smooth walled exocytic vesicles contained numerous 65-90 nm particles with canonical ribonucleocapsid structures, and virus-like particles with knob-like spikes covered the cell surface. To better understand how SARS-CoV-2 spreads in hiPSC-CMs we engineered an expression vector coding for the spike protein with a monomeric emerald-green fluorescent protein fused to its cytoplasmic tail (S-mEm). Proteolytic processing of S-mEm and the parental spike were equivalent. Live cell imaging tracked spread of S-mEm cell-to-cell and documented formation of syncytia. A cell-permeable, peptide-based molecule that blocks the catalytic site of furin and furin-like proteases abolished cell fusion. A spike mutant with the single amino acid change R682S that disrupts the multibasic furin cleavage motif was fusion inactive. Thus, SARS-CoV-2 replicates efficiently in hiPSC-CMs and furin and/or furin-like-protease activation of its spike protein is required for fusion-based cytopathology. This hiPSC-CM platform enables target-based drug discovery in cardiac COVID-19. Importance Cardiac complications frequently observed in COVID-19 patients are tentatively attributed to systemic inflammation and thrombosis, but viral replication has occasionally been confirmed in cardiac tissue autopsy materials. We developed an in vitro model of SARS-CoV-2 spread in myocardium using induced pluripotent stem cell-derived cardiomyocytes. In these highly differentiated cells, viral transcription levels exceeded those previously documented in permissive transformed cell lines. To better understand the mechanisms of SARS-CoV-2 spread, we expressed a fluorescent version of its spike protein that allowed us to characterize a fusion-based cytopathic effect. A mutant of the spike protein with a single amino acid mutation in the furin/furin-like protease cleavage site lost cytopathic function. Of note, the fusion activities of the spike protein of other coronaviruses correlated with the level of cardiovascular complications observed in infections with the respective viruses. These data indicate that SARS-CoV-2 may cause cardiac damage by fusing cardiomyocytes.
BackgroundTuberculosis remains a deadly infectious disease, affecting millions of people worldwide. Ethiopia ranks seventh among the twenty two high tuberculosis burden countries. The aim of this study was to determine the prevalence of smear positive pulmonary tuberculosis and its associated risk factors in Goba and Robe hospitals of Bale zone.MethodsA cross-sectional study was conducted on tuberculosis suspected patients from February-May 2012. Sputum samples were examined for acid fast bacilli using Ziehl-Neelsen staining and interview was conducted for each patient. Descriptive statistics, binary logistic and multivariable logistic regression analyses were employed to identify factors associated with pulmonary tuberculosis infection.ResultThe prevalence of smear positive tuberculosis was 9.2%. Age >36 (AOR = 3.54, 95% CI = 1. 3–9.82), marital status (AOR = 8.40, 95% CI = 3.02-23.20), family size (AOR = 4. 10, 95% CI = 1.60-10.80), contact with active tuberculosis patient (AOR = 5. 90; 95% CI = 2. 30–15.30), smoking cigarette regularly (AOR = 3. 90; 95% CI = 1. 20–12.40), and human immunodeficiency virus sero-status (AOR = 11. 70; 95% CI = 4. 30–31.70) were significantly associated with smear positive pulmonary tuberculosis.ConclusionThe prevalence of smear positive pulmonary tuberculosis was high in the study area. Age, marital status, family size, history of contact with active tuberculosis patient, smoking cigarettes, and HIV sero-status were among the risk factors significantly associated with acquiring tuberculosis. Hence, strict pulmonary tuberculosis screening of HIV patients and intensification of health education to avoid risk factors identified are recommended.
Low pathogenic avian influenza (LPAI) viruses are a source of sporadic human infections and could also contribute to future pandemic outbreaks but little is known about inter-species differences in the host responses to these viruses. Here, we studied host gene expression signatures of cell lines from three species (human, chicken, and canine) in response to six different viruses (H1N1/WSN, H5N2/F59, H5N2/F118, H5N2/F189, H5N3 and H9N2). Comprehensive microarray probe set re-annotation and ortholog mapping of the host genes was necessary to allow comparison over extended functionally annotated gene sets and orthologous pathways. The annotations are made available to the community for commonly used microarray chips. We observe a strong tendency of the response being cell type- rather than virus-specific. In chicken cells, we found up-regulation of host factors inducing virus infectivity (e.g., oxysterol binding protein like 1A (OSBPL1A) and Rho GTPase activating protein 21 (ARHGAP21)) while reducing apoptosis (e.g., mitochondrial ribosomal protein S27 (MRPS27)) and increasing cell proliferation (e.g., COP9 signalosome subunit 2 (COPS2)). On the other hand, increased antiviral, pro-apoptotic and inflammatory signatures have been identified in human cells while cell cycle and metabolic pathways were down-regulated. This signature describes how low pathogenic avian influenza (LPAI) viruses are being tolerated and shed from chicken but potentially causing cellular disruption in mammalian cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.