This paper presents ongoing experimental aerodynamic and efficiency measurements on a cold flow two-stage axial air test turbine with low reaction steam turbine blades at different degrees of partial admission. The overall objectives of the work are to experimentally investigate and quantify the steady and unsteady aerodynamic losses induced by partial admission. The first results show that both the total-to-static turbine efficiency drops and that the efficiency peak appears at lower isentropic velocity ratios with lower degrees of admission. Detailed steady traverse measurements of the static wall pressures downstream of sector-ends show strong local variations. The pressure wake from the partial admission blockage moves almost axially through the turbine while the temperature wake is located in a tangential position that represents the position of a particle trace based on velocity triangles, in the direction of the rotor rotation. Comparisons with 2D compressible flow computations around the circumference demonstrate the importance of the radial flow component in these experiments.
Large Eddy Simulations (LES) of natural gas ignition and combustion in turbulent flows are performed using a novel combustion model based on a composite progress variable, a tabulated chemistry ansatz and the stochastic-fields turbulence-chemistry interaction model. It is a significant advantage of this approach that it can be applied to industrial configurations with multi-stream mixing at relatively low computational cost and modeling complexity. The computational cost is independent of the chemical mechanism or the type of fuel, but increases linearly with the number of streams. The model is validated successfully against the Cabra methane flame and Delft Jet in Hot Coflow (DJFC) flame. Both cases constitute fuel jets in a vitiated coflow. The DJFC flame coflow has a non-uniform mixture of air and hot gases. The model considers this non-uniformity by an additional mixture fraction dimension, emulating a ternary mixing case. The model not only predicts flame location, but also the temperature distribution quantitatively. The LES combustion model is further extended to consider four stream mixing. It has been successfully validated for ALSTOM’s reheat combustor at atmospheric conditions. Compared to the past steady-state RANS (Reynolds Averaged Navier-Stokes) simulations [1], the LES simulations provide an even better understanding of the turbulent flame characteristics, which helps in the burner optimization.
The increasing use of renewables for energy production is also accompanied by an increasing need for flexible power production, while aiming at carbon free emissions. The potential solutions of energy storage of excess generation from renewables through hydrogen production and precombustion carbon capture are gaining momentum. Both scenarios require gas turbines capable of operation with hydrogen-based fuels. At the same time, the composition of natural gas considered for use within gas turbines is becoming significantly more variable due to increased use of liquefied natural gas and a wider range of gas sources and extraction methods. Fuel flexibility, both in terms of the amount of hydrogen and higher hydrocarbons is therefore of utmost importance in modern gas turbine development. This paper provides an overview of key steps taken in the design and development of an operation concept, leveraging the advantage of the GT36 Constant Pressure Sequential Combustion system (CPSC)a premixed low emission reheat combustion technology, characterised by an extremely broad fuel range capability, composed of two combustion stages in series. The results presented in this paper clearly show that the complementarity behaviour of first and second combustion stagesextensively proven for fuels containing high concentrations of higher hydrocarbonscan be extended to hydrogen. Ultimately, this allows the achievement of ultra-low emissions at full combustor exit temperature maintaining the power and efficiency performance of F and H class engines. Recent validation performed at the high pressure combustion facility at DLR-Cologne, proved fuel flexibility with minimal or no de-rating with hydrogen contents from 0 to 50% in volume, without any modification of the standard GT36 hardware. Based on the current studies, the flexibility of the GT36 CPSC system is envisaged to enable a further increase in hydrogen content allowing this H class engine to be operated with 100% hydrogen.
Modern gas turbines call for an ultra-high firing temperature and fuel flexibility while keeping emissions at very low levels. Sequential combustion has demonstrated its advantages toward such ambitious targets. A sequential combustion system, as deployed in the GT26 and GT36 engines, consists of two burners in series, the first one optimized to provide the optimum boundary condition for the second one, the sequential burner. This is the key component for the achievement of the required combustor performance dictated by F and H class engines, including versatile and robust operation with hydrogen-based fuels. This paper describes the key development considerations used to establish a new sequential burner surpassing state-of-the-art hardware in terms of emission reduction, fuel flexibility and load flexibility. A novel multi-point injector geometry was deployed based on combustion and fluid dynamic considerations to maximize fuel / air mixing quality at minimum pressure loss. Water channel experiments complemented by CFD describe the evolution of the fuel / air mixture fraction through the mixing section and combustion chamber to enable operation with major NOx reduction. Furthermore, Laser Doppler Anemometry and Laser Induced Fluorescence were used to best characterize the interaction between hot-air and fuel and the fuel / air mixing in the most critical regions of the system. To complete the overview of the key development steps, mechanical integrity and manufacturing considerations based on additive manufacturing are also presented. The outcome of 1D, CFD and fluid dynamic experimental findings were then validated through full-scale, full-pressure combustion tests. These demonstrate the novel Center Body Burner is enabling operation at lower emissions, both at part load and full load conditions. Furthermore, the validation of the burner was also extended to hydrogen-based fuels with a variety of hydrogen / natural gas blends.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.