Can-annular combustors consist of a set of independent cans, connected on the upstream side to the combustor plenum and on the downstream side to the turbine inlet, where a transition duct links the round geometry of each can with the annular segment of the turbine inlet. Each transition duct is open on the sides toward the adjacent transition ducts, so that neighboring cans are acoustically connected through a so-called cross-talk open area. This theoretical, numerical, and experimental work discusses the effect that this communication has on the thermoacoustic frequencies of the combustor. We show how this communication gives rise to axial and azimuthal modes, and that these correspond to particularly synchronized states of axial thermoacoustic oscillations in each individual can. We show that these combustors typically show clusters of thermoacoustic modes with very close frequencies and that a slight loss of rotational symmetry, e.g., a different acoustic response of certain cans, can lead to mode localization. We corroborate the predictions of azimuthal modes, clusters of eigenmodes, and mode localization with experimental evidence.
This paper concerns the influence of the phase of the heat release response on thermoacoustic systems. We focus on one pair of degenerate azimuthal acoustic modes, with frequency ω 0. The same results apply for an axial acoustic mode. We show how the value φ 0 and the slope −τ of the flame phase at the frequency ω 0 affects the boundary of stability, the frequency and amplitude of oscillation, and the phase φ qp between heat release rate and acoustic pressure. This effect depends on φ 0 and on the nondimensional number τ ω 0 , which can be quickly calculated. We find for example that systems with large values of τ ω 0 are more prone to oscillate, i.e. they are more likely to have larger growth rates, and that at very large values of τ ω 0 the value φ 0 of the flame phase at ω 0 does not play a role in determining the system's stability. Moreover for a fixed flame gain, a flame whose phase changes rapidly with frequency is more likely to excite an acoustic mode. We propose ranges for typical values of nondimensional acoustic damping rates, frequency shifts and growth rates based on a literature review. We study the system in the nonlinear regime by applying the method of averaging and of multiple scales. We show how to account in the time domain for a varying frequency of oscillation as a function of amplitude, and validate these results with extensive numerical simulations for the parameters in the proposed ranges. We show that the frequency of oscillation ω B and the flame phase φ qp at the limit cycle match the respective values on the boundary of stability. We find good agreement between the model and thermoacoustic experiments, both in terms of the ratio ω B /ω 0 and of the phase φ qp , and provide an interpretation of the transition between different thermoacoustic states of an experiment. We discuss the effect of neglecting the component of heat release rate not in phase with the pressure p as assumed in previous studies. We show that this component should not be neglected when making a prediction of the system's stability and amplitudes, but we present some evidence that it may be neglected when identifying a system that is unstable and is already oscillating
This paper introduces and presents validation of the Constant Pressure Sequential Combustion system (denoted CPSC), a second generation concept developed for and applied to the new Ansaldo GT36 H-class gas turbine combustors. It has evolved from the well-established sequential burner technology applied to all current GT26 and GT24 gas turbines, and contains all architectural improvements implemented since original inception of this engine frame in 1994, with beneficial effects on the operation turndown, fuel flexibility, on the overall system robustness, and featuring the required aspects to stay competitive in the present day energy market. The applied air and fuel management therefore facilitate emission and dynamics control at both the extremely high and low firing temperature ranges required for existing and future Ansaldo gas turbine engine classes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.