BackgroundHill rices (Oryza sativa L.) are direct seeded rices grown on hill slopes of different gradients. These landraces have evolved under rainfed and harsh environmental conditions and may possess genes governing adaptation traits such as tolerance to cold and moisture stress. In this study, 64 hill rice landraces were collected from the state of Arunachal Pradesh of North-Eastern region of India, and assessed by agro-morphological variability and microsatellite markers polymorphism. Our aim was to use phenotypic and genetic diversity data to understand the basis of farmers’ classification of hill rice landraces into two groups: umte and tening. Another goal was to understand the genetic differentiation of hill rices into Indica or japonica subspecies.ResultsAccording to farmers’ classification, hill rices were categorized into two groups: umte (large-grained, late maturing) and tening (small-grained, early maturing). We did not find significant difference in days to 50 % flowering between the groups. Principal component analysis revealed that two groups can be distinguished on the basis of kernel length-to-width ration (KLW), kernel length (KL), grain length (GrL), grain length-to-width ration (GrLW) and plant height (Ht). Stepwise canonical discriminant analysis identified KL and Ht as the main discriminatory characters between the cultivar groups. Genetic diversity analysis with 35 SSR markers revealed considerable genetic diversity in the hill rice germplasm (gene diversity: 0.66; polymorphism information content: 0.62). Pair-wise allelic difference between umte and tening groups was not statistically significant. The model-based population structure analysis showed that the hill rices were clustered into two broad groups corresponding to Indica and Japonica. The geographic distribution and cultivars grouping of hill rices were not congruent in genetic clusters. Both distance- and model-based approaches indicated that the hill rices were predominantly japonica or admixture among the groups within the subspecies. These findings were further supported by combined analysis hill rices with 150 reference rice accessions representing major genetic groups of rice.ConclusionThis study collected a valuable set of hill rice germplasm for rice breeding and for evolutionary studies. It also generated a new set of information on genetic and phenotypic diversity of hill rice landraces in North-Eastern region of India. The collected hill rices were mostly japonica or admixture among the subpopulations of Indica or Japonica. The findings are useful for utilization and conservation of hill rice germplasm.Electronic supplementary materialThe online version of this article (doi:10.1186/s12863-016-0414-1) contains supplementary material, which is available to authorized users.
Understanding of genetic diversity is important to explore existing gene in any crop breeding program. Most of the diversity preserved in the landraces which are well–known reservoirs of important traits for biotic and abiotic stresses. In the present study, the genetic diversity at twenty-four most significant blast resistance gene loci using twenty-eight gene specific markers were investigated in landraces originated from nine diverse rice ecologies of India. Based on phenotypic evaluation, landraces were classified into three distinct groups: highly resistant (21), moderately resistant (70) and susceptible (70). The landraces harbour a range of five to nineteen genes representing blast resistance allele with the frequency varied from 4.96% to 100%. The cluster analysis grouped entire 161 landraces into two major groups. Population structure along with other parameters was also analyzed to understand the evolution of blast resistance gene in rice. The population structure analysis and principal coordinate analysis classified the landraces into two sub–populations. Analysis of molecular variance showed maximum (93%) diversity within the population and least (7%) between populations. Five markers viz; K3957, Pikh, Pi2–i, RM212and RM302 were strongly associated with blast disease with the phenotypic variance of 1.4% to 7.6%. These resistant landraces will serve as a valuable genetic resource for future genomic studies, host–pathogen interaction, identification of novel R genes and rice improvement strategies.
The inter relationships between the two progenitors is interesting as both wild relatives are known to be the great untapped gene reservoirs. The debate continues on granting a separate species status to Oryza nivara. The present study was conducted on populations of Oryza rufipogon and Oryza nivara from Eastern India employing morphological and molecular characteristics. The cluster analysis of the data on morphological traits could clearly classify the two wild forms into two separate discrete groups without any overlaps i.e. lack of intermediate forms, suggesting the non-sympatric existence of the wild forms. Amplification of hyper variable regions of the genome could reveal 144 alleles suggesting high genetic diversity values (average He = 0.566). Moreover, with 42.37% of uncommon alleles between the two wild relatives, the molecular variance analysis (AMOVA) could detect only 21% of total variation (p < 0.001) among them and rest 59% was within them. The population structure analysis clearly classified these two wild populations into two distinct sub-populations (K = 2) without any overlaps i.e. lack of intermediate forms, suggesting the non-sympatric existence of the wild forms. Clear differentiation into two distinct groups indicates that O. rufipogon and O. nivara could be treated as two different species.
Abiotic stresses adversely affect rice yield and productivity, especially under the changing climatic scenario. Exposure to multiple abiotic stresses acting together aggravates these effects. The projected increase in global temperatures, rainfall variability, and salinity will increase the frequency and intensity of multiple abiotic stresses. These abiotic stresses affect paddy physiology and deteriorate grain quality, especially milling quality and cooking characteristics. Understanding the molecular and physiological mechanisms behind grain quality reduction under multiple abiotic stresses is needed to breed cultivars that can tolerate multiple abiotic stresses. This review summarizes the combined effect of various stresses on rice physiology, focusing on grain quality parameters and yield traits, and discusses strategies for improving grain quality parameters using high-throughput phenotyping with omics approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.