We investigated the electronic and thermoelectric properties of half-Heusler alloys NiTZ (T = Sc and Ti; Z = P, As, Sn, and Sb) having an 18 valence electron count. Calculations were performed by means of density functional theory and the Boltzmann transport equation with constant relaxation time approximation, validated by NiTiSn. The chosen half-Heuslers were found to be indirect bandgap semiconductors, and the lattice thermal conductivity was comparable with the state-of-the-art thermoelectric materials. The estimated power factor for NiScP, NiScAs, and NiScSb revealed that their thermoelectric performance can be enhanced by an appropriate doping rate. The value of ZT found for NiScP, NiScAs, and NiScSb is 0.46, 0.35, and 0.29, respectively, at 1200 K.
Thermoelectric phenomena provides an alternative for power generation and refrigeration which can be the best solution to the energy crisis by utilizing waste heat energy in the near future. In...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.