Aim:
Materials and Methods:Results:
Conclusion:
Keywords:To evaluate the presence of gastrointestinal helminthic parasites in clinically apparent canines of Bhubaneswar, Odisha and to determine the risk of zoonotic infection to dog owners through questionnaire survey.
Newcastle disease (ND), caused by Newcastle disease virus (NDV), is a contagious disease that affects a variety of domestic and wild avian species. Though ND is vaccine-preventable, it is a persistent threat to poultry industry across the globe. The disease represents a leading cause of morbidity and mortality in chickens. To better understand the epidemiology of NDV among commercial and backyard chickens of Odisha, where chicken farming is being prioritized to assist with poverty alleviation, a cross-sectional study was conducted in two distinct seasons during 2018. Choanal swabs (n = 1361) from live birds (commercial layers, broilers, and backyard chicken) and tracheal tissues from dead birds (n = 10) were collected and tested by real-time reverse transcription polymerase chain reaction (RT-PCR) for the presence of matrix (M) and fusion (F) genes of NDV. Risk factors at the flock and individual bird levels (health status, ND vaccination status, geographical zone, management system, and housing) were assessed using multivariable logistic regression analyses. Of the 1371 samples tested, 160 were positive for M gene amplification indicating an overall apparent prevalence of 11.7% (95% CI 10.1–13.5%). Circulation of virulent NDV strains was also evident with apparent prevalence of 8.1% (13/160; 95% CI: 4.8–13.4%). In addition, commercial birds had significantly higher odds (75%) of being infected with NDV as compared to backyard poultry (p = 0.01). This study helps fill a knowledge gap in the prevalence and distribution of NDV in apparently healthy birds in eastern India, and provides a framework for future longitudinal research of NDV risk and mitigation in targeted geographies—a step forward for effective control of ND in Odisha.
In this paper, we propose a novel algorithm based on Zidan's quantum computing model for remotely controlling the direction of a quantumcontrolled mobile robot equipped with n-movements. The proposed algorithm is based on the measurement of concurrence value for the different movements of the robot. Consider a faraway robot that moves in the deep space (e.g., moves toward a galaxy), and it is required to control the direction of this robot from a ground station by some person Alice. She sends an unknown qubit α |0 + β |1 via the teleportation protocol to the robot. Then, the proposed algorithm decodes the received unknown qubit into an angle θ, that determines the motion direction of the robot, based on the concurrence value. The proposed algorithm has been tested for four and eight movements. Two simulators have been tested; IBM Quantum composer and IBM's system, The two simulators achieved the same result approximately. The motion of any part of the robot is considered, if it has a pre-existing sensor system and a locomotive system,. We can use this technique in many places like in space robots (16 directions). The results show that the proposed technique can be easily used for a huge number of movements. However, increasing the number of movements of the robot will increase the number of qubits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.