DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal. If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:
The current industrial process of choice for Deep Reactive Ion Etching (DRIE) of 3D features, e.g. Through-Silicon Vias (TSVs), Microelectromechanical Systems (MEMS), etc., is the Bosch process, which uses alternative SF6 etch cycles and C4F8-based sidewall passivation cycles in a time-sequenced mode. An alternative, potentially faster and more accurate process is to have wafers pass under spatially-divided reaction zones, which are individually separated by so-called N2-gas bearings ‘curtains’ of heights down to 10–20 μm. In addition, the feature sidewalls can be protected by replacing the C4F8-based sidewall passivation cycles by cycles forming chemisorbed and highly uniform passivation layers of Al2O3 or SiO2 deposited by Atomic Layer Deposition (ALD), also in a spatially-divided mode. ALD is performed either in thermal mode, or plasma-assisted mode in order to achieve near room-temperature processing.
For metal filling of 3D-etched TSVs, or for deposition of 2D metal conductor lines one can use Laser-Induced Forward Transfer (LIFT) of metals. LIFT is a maskless, ‘solvent’-free deposition method, utilizing different types of pulsed lasers to deposit thin material (e.g. Cu, Au, Al, Cr) layers with μm-range resolution from a transparent carrier (ribbon) onto a close-by acceptor substrate. It is a dry, single-step, room temperature process in air, suitable for different types of interconnect fabrication, e.g. TSV filling and redistribution layers (RDL), without the use of wet chemistry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.