It has recently become possible to study the dynamics of information diffusion in techno-social systems at scale, due to the emergence of online platforms, such as Twitter, with millions of users. One question that systematically recurs is whether information spreads according to simple or complex dynamics: does each exposure to a piece of information have an independent probability of a user adopting it (simple contagion), or does this probability depend instead on the number of sources of exposure, increasing above some threshold (complex contagion)? Most studies to date are observational and, therefore, unable to disentangle the effects of confounding factors such as social reinforcement, homophily, limited attention, or network community structure. Here we describe a novel controlled experiment that we performed on Twitter using ‘social bots’ deployed to carry out coordinated attempts at spreading information. We propose two Bayesian statistical models describing simple and complex contagion dynamics, and test the competing hypotheses. We provide experimental evidence that the complex contagion model describes the observed information diffusion behavior more accurately than simple contagion. Future applications of our results include more effective defenses against malicious propaganda campaigns on social media, improved marketing and advertisement strategies, and design of effective network intervention techniques.
With news pushed to smart phones in real time and social media reactions spreading across the globe in seconds, the public discussion can appear accelerated and temporally fragmented. In longitudinal datasets across various domains, covering multiple decades, we find increasing gradients and shortened periods in the trajectories of how cultural items receive collective attention. Is this the inevitable conclusion of the way information is disseminated and consumed? Our findings support this hypothesis. Using a simple mathematical model of topics competing for finite collective attention, we are able to explain the empirical data remarkably well. Our modeling suggests that the accelerating ups and downs of popular content are driven by increasing production and consumption of content, resulting in a more rapid exhaustion of limited attention resources. In the interplay with competition for novelty, this causes growing turnover rates and individual topics receiving shorter intervals of collective attention.
Basic personality traits are typically assessed through questionnaires. Here we consider phone-based metrics as a way to asses personality traits. We use data from smartphones with custom data-collection software distributed to 730 individuals. The data includes information about location, physical motion, face-to-face contacts, online social network friends, text messages and calls. The data is further complemented by questionnaire-based data on basic personality traits. From the phone-based metrics, we define a set of behavioural variables, which we use in a prediction of basic personality traits. We find that predominantly, the Big Five personality traits extraversion and, to some degree, neuroticism are strongly expressed in our data. As an alternative to the Big Five, we investigate whether other linear combinations of the 44 questions underlying the Big Five Inventory are more predictable. In a tertile classification problem, basic dimensionality reduction techniques, such as independent component analysis, increase the predictability relative to the baseline from 11% to 23%. Finally, from a supervised linear classifier, we were able to further improve this predictability to 33%. In all cases, the most predictable projections had an overweight of the questions related to extraversion and neuroticism. In addition, our findings indicate that the score system underlying the Big Five Inventory disregards a part of the information available in the 44 questions.
Vaccine hesitancy is currently recognized by the WHO as a major threat to global health. Recently, especially during the COVID-19 pandemic, there has been a growing interest in the role of social media in the propagation of false information and fringe narratives regarding vaccination. Using a sample of approximately 60 billion tweets, we conduct a large-scale analysis of the vaccine discourse on Twitter. We use methods from deep learning and transfer learning to estimate the vaccine sentiments expressed in tweets, then categorize individual-level user attitude towards vaccines. Drawing on an interaction graph representing mutual interactions between users, we analyze the interplay between vaccine stances, interaction network, and the information sources shared by users in vaccine-related contexts. We find that strongly anti-vaccine users frequently share content from sources of a commercial nature; typically sources which sell alternative health products for profit. An interesting aspect of this finding is that concerns regarding commercial conflicts of interests are often cited as one of the major factors in vaccine hesitancy. Further, we show that the debate is highly polarized, in the sense that users with similar stances on vaccination interact preferentially with one another. Extending this insight, we provide evidence of an epistemic echo chamber effect, where users are exposed to highly dissimilar sources of vaccine information, depending the vaccination stance of their contacts. Our findings highlight the importance of understanding and addressing vaccine mis- and dis-information in the context in which they are disseminated in social networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.