The narrow production window for compacted graphite iron material (CGI) drastically reduces the possibilities to produce it in small batches outside an industrial environment. This fact hinders laboratory-scale investigations on CGI solidification. This work presents a solution to that issue by introducing an experimental technique to produce graphitic cast iron of the main three families. Samples of a base hypereutectic spheroidal graphite iron (SGI) were re-melted in a resistance furnace under Ar atmosphere. Varying the holding time at 1723 K (1450°C), graphitic irons ranging from spheroidal to lamellar were produced. Characterization of the graphite morphology evolution, in terms of nodularity as a function of holding time, is presented. The nodularity decay for the SGI region suggests a linear correlation with the holding time. In the CGI region, nodularity deterioration shows a slower rate, concluding with the sudden appearance of lamellar graphite. The fading process of magnesium, showing agreement with previous researchers, is described by means of empirical relations as a function of holding time and nodularity. The results on nodularity fade and number of nodules per unit area fade suggest that both phenomena occur simultaneously during the fading process of magnesium.
An SGI was machined into 400 g cylindrical pieces and remelted in an electrical resistance furnace protected by Ar gas to produce materials ranging from SGI to CGI. The graphite morphology was controlled by varying the holding time at 1723 K (1450°C) between 10 and 60 minutes. The discrete sectional size distribution of nodules by number density was measured on cross sections of the specimens and translated to volumetric distribution by volume fraction. Subpopulations of nodules were distinguished by fitting Gaussian distribution functions to the measured distribution. Primary and eutectic graphite, were found to account for most of the volume of nodular graphite in all cases. For holding times of 40 minutes and greater, corresponding to nodularity roughly below 40 pct, the primary subpopulation was very small and difficult to distinguish, leaving eutectic nodules as the dominant subpopulation. The mode and standard deviation of the two subpopulations were roughly independent of nodularity. Moreover, the nodular and vermicular graphite were segregated in the microstructure. In conclusion, the results suggest that the parallel development of the vermicular eutectic had small influence on the size distribution of eutectic graphite nodules.
This paper presents an unconventional etching technique to reveal the microstructure in a hypoeutectic lamellar graphite iron that has been quenched after isothermal heat treatment in the proeutectic semi-solid temperature region. A technique for quantifying the dendrite microstructure using the aforementioned etching technique involving a combination of a raster graphics editor and an image analysis software is outlined. The agreement between this quantification technique with regard to volume fraction and surface area per unit volume of the dendritic austenite and corresponding point counting and line intercept techniques is analyzed. The etching technique was found useful but sporadic tinting of martensite was problematic. Some measurements showed significant systematic disagreement which correlated with the coarseness of the measured dendrites. Most systematic disagreement is attributed to difficulties in defining the dendrite boundary in the analogues and much of the random disagreement to easily identified discrepancies between the analogue and the micrograph.
Microsegregation is closely coupled with solidification, the development of microstructure, and involved in the formation of various casting defects. This paper demonstrates how the local composition of the metal matrix of graphitic cast irons, measured using quantitative electron microprobe analysis, can be used to estimate its solidification chronology. The method is applied in combination with Fourier thermal analysis to investigate the formation of micropores in cast irons with varying proportions of compacted and spheroidal graphite produced by remelting.The results indicate that micropores formed at mass fractions of solid between 0.77 and 0.91, which corresponded to a stage of solidification when the temperature decline of the castings was large and increasing. In 4 out of the 5 castings, pores appear to have formed soon after the rate of solidification and heat dissipation had reached their maximum and were decreasing. Freezing point depression due to build-up of microsegregation and the transition from compacted to spheroidal type eutectic growth both influence solidification kinetics and the temperature evolution of the casting, but did not clearly account for the observed late decline in the rate of solidification.
Shrinkage defects are common problems in industrially produced metal cast components. Local density changes occur during freezing, which demand material transport between parts of the casting, often involving flow of liquid through partially solid regions. Cast alloys typically freeze with a dendritic morphology, which large interface against the liquid restricts liquid flow. Recent research also indicates that this dendritic structure has an impact on the mechanical properties of the final material. For these reasons it is important to understand and predict the evolution of this structure through the solidification of cast alloys. In this work, the evolution of the dendritic austenite structure is investigated in a near-eutectic compacted graphite iron solidified under three different cooling conditions. The solidification was interrupted by water quenching, enabling characterization of the dendritic austenite structure at different stages of solidification. Higher cooling rate was found to promote a more coherent dendritic austenite structure which constituted a larger volume fraction. In parallel with growth of the eutectic, the amount of dendritic austenite in extra-eutectic regions continued to rise. This rise was associated with both tip growth of new dendrites and with growth by thickening of existing dendrites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.