To evaluate both refractive and biometry results of presbyopic refractive lens exchange (RLE) with trifocal intraocular lens (IOL) implantation in eyes previously submitted to corneal laser vision correction (LVC).
Up to 7% of eyes implanted with FineVision trifocal IOLs had a hyperopic shift of greater than +0.75 D approximately 2 weeks to 3 months postoperatively. Using a CTR in MicroF eyes had no statistically significant effect on refractive stability. Placing a CTR with POD FT IOLs appeared to reduce refractive stability, although not significantly. [J Refract Surg. 2017;33(12):802-806.].
Purpose
To compare the refractive predictability of ray tracing IOL calculations based on OCT data versus traditional IOL calculation formulas based on reflectometry in patients with a history of previous myopic laser vision correction (LVC).
Patients and Methods
This was a prospective interventional single-arm study of IOL calculations for cataract and refractive lens exchange (RLE) patients with a history of myopic LVC. Preoperative biometric data were collected using an optical low coherence reflectometry (OLCR) device (Haag-Streit Lenstar 900) and two optical coherence tomography (OCT) devices (Tomey Casia SS-1000 and Heidelberg Engineering Anterion). Traditional post LVC formulas (Barret True-K no-history and Haigis-L) with reflectometry data, and ray tracing IOL calculation software (OKULIX, Panopsis GmbH, Mainz, Germany) with OCT data were used to calculate IOL power. Follow-up examination was 2 to 3 months after surgery. The main outcome measure, refractive prediction error (RPE), was calculated as the achieved postoperative refraction minus the predicted refraction.
Results
We found that the best ray tracing combination (Anterion-OKULIX) resulted in an arithmetic prediction error statistically significantly lower than that achieved with the best formula calculation (Barret True-K no-history) (−0.13 D and −0.32 D, respectively, adjusted
p
= 0.01), while the Barret TK NH had the lowest SD. The absolute prediction error was 0.26 D and 0.35 D for Anterion-OKULIX and Barret TK NH, respectively, but this was not statistically significantly different. The Anterion-OKULIX calculation also had the highest percentage of eyes within ± 0.25, compared to both formulas and within ±0.50 and ±0.75 compared to the Haigis-L (
p
= 0.03).
Conclusion
Ray tracing calculation based on OCT data from the Anterion device can yield similar or better results than traditional post LVC formulas. Ray tracing calculations are based on individual measurements and do not rely on the ocular history of the patient and are therefore applicable for any patient, also without previous refractive surgery.
Purpose: To compare the prevalence of dry eye disease (DED) as determined by signs and symptoms in patients with a history of laser vision correction (LVC) or implantable collamer lens (ICL) implantation 5-15 years ago with a matched control group with no history of refractive surgery. Patient and Methods: This was a cross-sectional case-control study. The subject population included patients who had LVC or ICL 5 to 15 years ago. The control group was age matched. A test eye was randomly chosen. Subjects were required to have good ocular health. DED was evaluated using categorical cut-off criteria for tear film osmolarity (measured in both eyes), the subjective Ocular Surface Disease Index (OSDI), the dynamic Objective Scatter Index (OSI), non-invasive keratography tear break-up time (NIKBUT), meibography, and the Schirmer 1 test. Results: The study included 257 subjects (94 LVC, 80 ICL, 83 control). The frequency of hyperosmolarity was significantly higher in the LVC group vs the control (73% vs 50%, p = 0.002), In contrast, the frequency of subjective symptoms tended to be lower in the LVC group than in the control group (19% vs 31%; p = 0.06). These differences were not seen between the ICL and control group. Conclusion: The results suggest that LVC may cause tear film instability as indicated by hyperosmolar tears up to 15 years after surgery, with few subjective symptoms of dry eye. This may have implications for IOL calculations for cataract or refractive lens exchange later in life.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.