The repeated expansion of East Asian steppe cultures was a key driver of Eurasian history, forging new social, economic, and biological links across the continent. Climate has been suggested as important driver of these poorly understood cultural expansions, but paleoclimate records from the Mongolian Plateau often suffer from poor age control or ambiguous proxy interpretation. Here, we use a combination of geochemical analyses and comprehensive radiocarbon dating to establish the first robust and detailed record of paleohydrological conditions for Lake Telmen, Mongolia, covering the past ~ 4000 years. Our record shows that humid conditions coincided with solar minima, and hydrological modeling confirms the high sensitivity of the lake to paleoclimate changes. Careful comparisons with archaeological and historical records suggest that in the vast semi-arid grasslands of eastern Eurasia, solar minima led to reduced temperatures, less evaporation, and high biomass production, expanding the power base for pastoral economies and horse cavalry. Our findings suggest a crucial link between temperature dynamics in the Eastern Steppe and key social developments, such as the emergence of pastoral empires, and fuel concerns that global warming enhances water scarcity in the semi-arid regions of interior Eurasia.
Volcanic ash layers are important markers for the chronostratigraphy of paleoclimate and paleoenvironmental archives at the southern tip of South America. However, this requires that tephras are well-dated. We report geochemical data from the MA1 stalagmite formed in a non-karst cave near Mt. Burney volcano in southernmost Patagonia (~53°S). High-resolution LA-ICP-MS analyses, SEM imagery, and NanoSIMS enable to identify volcanogenic signals during the last 4.5 kyrs BP from sub-annual trace element variations and tephra particles in distinct laminae. The new 230Th/U-chronology of MA1 provides precise dating of tephra from Mt. Burney (MB) and Aguilera (A) at 4216 +93/−193 yrs BP (MB2), 2291 ± 33 yrs BP (MB3), 853 +41/−60 yrs BP (MB4) and 2978 +91/−104 yrs BP (A1). This unique high-resolution record of MA1 holds potential to date further eruptions from Southern Andean volcanoes for the tephrochronology in this critical region, and potentially also large-volume explosive volcanism off South America.
Volcanic ash layers are important markers for the chronostratigraphy of paleoclimate and paleoenvironmental archives at the southern tip of South America. However, this requires that tephras are well-dated. We report geochemical data from stalagmite MA1 formed in a non-karst cave near Mt. Burney volcano in southernmost Patagonia (~53°S). High-resolution LA-ICP-MS analyses, SEM imagery, EPMA data, and NanoSIMS enable to identify volcanogenic signals during the last 4.5 kyrs from sub-annual trace element variations and tephra particles in distinct laminae. Our new 230Th/U-chronology of MA1 provides precise dating of tephra from Mt. Burney (MB) and, probably, Aguilera (A) at 4,216 +93/−193 yrs BP (MB2), 2,291 ± 33 yrs BP (MB3), 853 +41/−60 yrs BP (MB4) and 2,978 +91/−104 yrs BP (A1). This unique high-resolution record holds potential to date further eruptions from Southern Andean volcanoes for the tephrochronology in this critical region, and potentially also large-volume explosive volcanism off South America.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.