In this work we explore the connections between (linear) nested sequent calculi and ordinary sequent calculi for normal and non-normal modal logics. By proposing local versions to ordinary sequent rules we obtain linear nested sequent calculi for a number of logics, including to our knowledge the first nested sequent calculi for a large class of simply dependent multimodal logics, and for many standard non-normal modal logics. The resulting systems are modular and have separate left and right introduction rules for the modalities, which makes them amenable to specification as bipole clauses. While this granulation of the sequent rules introduces more choices for proof search, we show how linear nested sequent calculi can be restricted to blocked derivations, which directly correspond to ordinary sequent derivations.
ACM Reference Format:Björn Lelllmann and Elaine Pimentel, 2016. Modularisation of sequent calculi for normal and non-normal modalities.
We consider a general format for sequent rules for not necessarily normal modal logics based on classical or intuitionistic propositional logic and provide relatively simple local conditions ensuring cut elimination for such rule sets. The rule format encompasses e.g. rules for the boolean connectives and transitive modal logics such as S4 or its constructive version. We also adapt the method of constructing suitable rule sets by saturation to the intuitionistic setting and provide a criterium for translating axioms for intuitionistic modal logics into sequent rules. Examples include constructive modal logics and conditional logic VA.
Abstract. We present unlabelled cut-free sequent calculi for Lewis' conditional logic V and extensions, in both the languages with the entrenchment connective and the strong conditional. The calculi give rise to Pspace-decision procedures, also in the language with the weak conditional. Furthermore, they are used to prove the Craig interpolation property for all the logics under consideration, and yield a Pspace-decision procedure for a recently considered hybrid version of V.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.