In this work we explore the connections between (linear) nested sequent calculi and ordinary sequent calculi for normal and non-normal modal logics. By proposing local versions to ordinary sequent rules we obtain linear nested sequent calculi for a number of logics, including to our knowledge the first nested sequent calculi for a large class of simply dependent multimodal logics, and for many standard non-normal modal logics. The resulting systems are modular and have separate left and right introduction rules for the modalities, which makes them amenable to specification as bipole clauses. While this granulation of the sequent rules introduces more choices for proof search, we show how linear nested sequent calculi can be restricted to blocked derivations, which directly correspond to ordinary sequent derivations.
ACM Reference Format:Björn Lelllmann and Elaine Pimentel, 2016. Modularisation of sequent calculi for normal and non-normal modalities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.