A large-scale field experiment on in situ thin-layer capping was carried out in the polychlorinated dibenzodioxin and dibenzofuran (PCDD/F) contaminated Grenlandsfjords, Norway. The main focus of the trial was to test the effectiveness of active caps (targeted thickness of 2.5 cm) consisting of powdered activated carbon (AC) mixed into locally dredged clean clay. Nonactive caps (targed thickness of 5 cm) consisting of clay without AC as well as crushed limestone were also tested. Fields with areas of 10,000 to 40,000 m(2) were established at 30 to 100 m water depth. Auxiliary shaken laboratory batch experiments showed that 2% of the applied powdered AC substantially reduced PCDD/F porewater concentrations, by >90% for tetra-, penta- and hexa-clorinated congeners to 60-70% for octachlorinated ones. In-situ AC profiles revealed that the AC was mixed into the sediment to 3 to 5 cm depth in 20 months. Only around 25% of the AC was found inside the pilot fields. Sediment-to-water PCDD/F fluxes measured by in situ diffusion chambers were significantly lower at the capped fields than at reference fields in the same fjord, reductions being largest for the limestone (50-90%) followed by clay (50-70%), and the AC + clay (60%). Also reductions in overlying aqueous PCDD/F concentrations measured by passive samplers were significant in most cases (20-40% reduction), probably because of the large size of the trial fields. The AC was less effective in the field than in the laboratory, probably due to prolonged sediment-to-AC mass transfer times for PCDD/Fs and field factors such as integrity of the cap, new deposition of contaminated sediment particles, and bioturbation. The present field data indicate that slightly thicker layers of limestone and dredged clay can show as good physicochemical effectiveness as thin caps of AC mixed with clay, at least for PCDD/Fs during the first two years after cap placement.
Large discharges from oil and gas production platforms (produced water) have led to concerns for adverse biological effects in marine areas. The aim of this study was to investigate the development of DNA adductformation and related biomarkers in fish after chronic exposure to water-soluble components of oil. Atlantic cod (Gadus morhua) were exposed for up to 44 weeks to three treatments (low, pulsed, high) containing environmentally relevant concentrations of low-molecular-weight polycyclic aromatic hydrocarbons (PAHs) and short-chained alkylphenols (APs). A time- and dose-related pattern of DNA adduct formation (measured using 32P-postlabeling) was observed. The results suggested that an extended exposure period (more than 16 weeks) would be required for the formation of DNA adduct levels above background. Interestingly, fish receiving pulsed high exposure did not develop elevated concentrations of DNA adducts, possibly due to DNA repair processes. No obvious relationship between DNA adduct concentration and cytochrome P4501A activity (EROD) was observed. This study has demonstrated the genotoxic potential of water-soluble oil components, relevant for operational discharges (produced water) and chronic oil spills. The quantification of PAH metabolites in bile and hepatic DNA adduct formation appear to be suitable for environmental monitoring of chronic oil pollution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.