During 2020, the world has experienced extreme vulnerability in the face of a disease outbreak. The coronavirus disease 2019 (COVID-19) pandemic discovered in China and rapidly spread across the globe, infecting millions, causing hundreds of thousands of deaths, and severe downturns in the economies of countries worldwide. Biosurfactants can play a significant role in the prevention, control and treatment of diseases caused by these pathogenic agents through various therapeutic, pharmaceutical, environmental and hygiene approaches. Biosurfactants have the potential to inhibit microbial species with virulent intrinsic characteristics capable of developing diseases with high morbidity and mortality, as well as interrupting their spread through environmental and hygiene interventions. This is possible due to their antimicrobial activity, ability to interact with cells forming micelles and to interact with the immune system, and compatibility with relevant processes such as nanoparticle synthesis. They, therefore, can be applied in developing innovative and more effective pharmaceutical, therapeutics, sustainable and friendly environmental management approaches, less toxic formulations, and more efficient cleaning agents. These approaches can be easily integrated into relevant product development pipelines and implemented as measures for combating and managing pandemics. This review examines the potential approaches of biosurfactants as useful molecules in fighting microbial pathogens both known and previously unknown, such as COVID-19.
Many cells are known to actively release nano-sized outer membrane vesicles (OMVs) that contain bioactive proteins, lipids, and nucleic acids into the extracellular environment. These vesicles have been associated with...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.