The field of spine surgery has changed significantly over the past few decades as once technological fantasy has become reality. The advent of stereotaxis, intra-operative navigation, endoscopy, and percutaneous instrumentation have altered the landscape of spine surgery. The concept of minimally invasive spine (MIS) surgery has blossomed over the past ten years and now robot-assisted spine surgery is being championed by some as another potential paradigm altering technological advancement. The application of robotics in other surgical specialties has been shown to be a safe and feasible alternative to the traditional, open approach. In 2004 the Mazor Spine Assist robot was approved by FDA to assist with placement of pedicle screws and since then, more advanced robots with promising clinical outcomes have been introduced. Currently, robotic platforms are limited to pedicle screw placement. However, there are centers investigating the role of robotics in decompression, dural closure, and pre-planned osteotomies.Robot-assisted spine surgery has been shown to increase the accuracy of pedicle screw placement and decrease radiation exposure to surgeons. However, modern robotic technology also has certain disadvantages including a high introductory cost, steep learning curve, and inherent technological glitches. Currently, robotic spine surgery is in its infancy and most of the objective evidence available regarding its benefits draws from the use of robots in a shared-control model to assist with the placement of pedicle screws. As artificial intelligence software and feedback sensor design become more sophisticated, robots could facilitate other, more complex surgical tasks such as bony decompression or dural closure. The accuracy and precision afforded by the current robots available for use in spinal surgery potentially allow for even less tissue destructive and more meticulous MIS surgery. This article aims to provide a contemporary review of the use of robotics in MIS surgery.
The advent and widespread adoption of pedicle screw instrumentation prompted the need for image guidance in spine surgery to improve accuracy and safety. Although the conventional method, fluoroscopy, is readily available and inexpensive, concerns regarding radiation exposure and the drive to provide better visual guidance spurred the development of computer-assisted navigation.Contemporaneously, a non-navigated robotic guidance platform was also introduced as a competing modality for pedicle screw placement. Although the robot could provide high precision trajectory guidance by restricting four of the six degrees of freedom (DOF), the lack of real-time depth control and high capital acquisition cost diminished its popularity, while computer-assisted navigation platforms became increasingly sophisticated and accepted. The recent integration of real-time 3D navigation with robotic platforms has resulted in a resurgence of interest in robotics in spine surgery with the recent introduction of numerous navigated robotic platforms. The currently available navigated robotic spine surgery platforms include the
Background:The authors present a novel case of a hemangioblastoma of the optic nerve producing bilateral optic tract edema in a patient with von Hippel–Lindau disease (VHL). This is the only case in the literature documenting optic tract edema secondary to a hemangioblastoma of the optic nerve.Case Description:The patient was a 34-year-old female in whom this lesion was causing retro-orbital pain and proptosis. She had previously lost vision in the symptomatic eye secondary to a retinal hemangioblastoma. The optic nerve lesion was excised by sectioning the optic nerve both proximally and distally to the lesion. There were no complications and patient's symptoms resolved postoperatively. A follow-up magnetic resonance imaging (MRI) scan revealed complete excision of the mass and resolution of the optic tract edema.Conclusion:Optic nerve hemangioblastomas in patients with VHL are rare, but are manageable with meticulous microneurosurgery and with appropriate patient expectations. This is the first known case of an optic nerve hemangioblastoma producing bilateral optic tract edema, which resolved after resection of the prechiasmal tumor. Hemangioblastoma should remain in the differential diagnosis of optic nerve tumors, especially in the setting of VHL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.