Intelligent organisms face a variety of tasks requiring the acquisition of expertise within a specific domain, including the ability to discriminate between a large number of similar patterns. From an energy-efficiency perspective, effective discrimination requires a prudent allocation of neural resources with more frequent patterns and their variants being represented with greater precision. In this work, we demonstrate a biologically plausible means of constructing a single-layer neural network that adaptively (i.e., without supervision) meets this criterion. Specifically, the adaptive algorithm includes synaptogenesis, synaptic shedding, and bi-directional synaptic weight modification to produce a network with outputs (i.e. neural codes) that represent input patterns proportional to the frequency of related patterns. In addition to pattern frequency, the correlational structure of the input environment also affects allocation of neural resources. The combined synaptic modification mechanisms provide an explanation of neuron allocation in the case of self-taught experts.
The present article develops quantitative behavioral and neurophysiological predictions for rabbits trained on an air-puff version of the trace-interval classical conditioning paradigm. Using a minimal hippocampal model, consisting of 8,000 primary cells sparsely and randomly interconnected as a model of hippocampal region CA-3, the simulations identify conditions which produce a clear split in the number of trials individual animals should need to learn a criterion response. A trace interval that is difficult to learn, but still learnable by half the experimental population, produces a bimodal population of learners: an early learner group and a late learner group. The model predicts that late learners are characterized by two kinds of CA-3 neuronal activity fluctuations that are not seen in the early learners. As is typical in our minimal hippocampal models, the off-rate constant of the N-methyl-D-aspartate receptor receptor gives a timescale to the model that leads to a temporally quantifiable behavior, the learnable trace interval.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.