Olive-mill wastes are produced by the industry of olive oil production, which is a very important economic activity, particularly for Spain, Italy and Greece, leading to a large environmental problem of current concern in the Mediterranean basin. There is as yet no accepted treatment method for all the wastes generated during olive oil production, mainly due to technical and economical limitations but also the scattered nature of olive mills across the Mediterranean basin. The production of virgin olive oil is expanding worldwide, which will lead to even larger amounts of olive-mill waste, unless new treatment and valorisation technologies are devised. These are encouraged by the trend of current environmental policies, which favour protocols that include valorisation of the waste. This makes biological treatments of particular interest. Thus, research into different biodegradation options for olive-mill wastes and the development of new bioremediation technologies and/or strategies, as well as the valorisation of microbial biotechnology, are all currently needed. This review, whilst presenting a general overview, focusses critically on the most significant recent advances in the various types of biological treatments, the bioremediation technology most commonly applied and the valorisation options, which together will form the pillar for future developments within this field.
Selected biodegradable municipal solid waste fractions were subjected to fifteen different pre-hydrolysis treatments to obtain the highest glucose yield for bio-ethanol production. Pre-hydrolysis treatments consisted of dilute acid (H(2)SO(4), HNO(3) or HCl, 1 and 4%, 180 min, 60 degrees C), steam treatment (121 and 134 degrees C, 15 min), microwave treatment (700 W, 2 min) or a combination of two of them. Enzymatic hydrolysis was carried out with Trichoderma reesei and Trichoderma viride (10 and 60 FPU g(-1) substrate). Glucose yields were compared using a factorial experimental design. The highest glucose yield (72.80%) was obtained with a pre-hydrolysis treatment consisting of H(2)SO(4) at 1% concentration, followed by steam treatment at 121 degrees C, and enzymatic hydrolysis with Trichoderma viride at 60 FPU g(-1) substrate. The contribution of enzyme loading and acid concentration was significantly higher (49.39 and 47.70%, respectively), than the contribution of temperature during steam treatment (0.13%) to the glucose yield.
First-generation biofuels, mainly from corn and other food-based crops are being used as a direct substitute for fossil fuels in transport. However, they are available in limited volumes that do not make them serious replacements for petroleum. Second-generation biofuels from forest and crop residues, energy crops and municipal and construction waste, will arguably reduce net carbon emission, increase energy effi ciency and reduce energy dependency, potentially overcoming the limitations of fi rst-generation biofuels. Nevertheless, implementation of second-generation biofuels technology will require a sustainable management of energy, or development of local bioenergy systems. This study aims at identifying second-generation biofuel feedstock. It also provides information on the available technologies to produce second-generation biofuels. Finally it discusses the development of local bioenergy systems vs sustainable use of second-generation biofuels. Locally produced second-generation biofuels will exploit local biomass to optimize their production and consumption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.