Bone surface modifications are foundational to the correct identification of hominin butchery traces in the archaeological record. Until present, no analytical technique existed that could provide objectivity, high accuracy, and an estimate of probability in the identification of multiple structurally-similar and dissimilar marks. Here, we present a major methodological breakthrough that incorporates these three elements using Artificial Intelligence (AI) through computer vision techniques, based on convolutional neural networks. This method, when applied to controlled experimental marks on bones, yielded the highest rate documented to date of accurate classification (92%) of cut, tooth and trampling marks. After testing this method experimentally, it was applied to published images of some important traces purportedly indicating a very ancient hominin presence in Africa, America and Europe. The preliminary results are supportive of interpretations of ancient butchery in some places, but not in others, and suggest that new analyses of these controversial marks should be done following the protocol described here to confirm or disprove these archaeological interpretations.
Taphonomists have long struggled with identifying carnivore agency in bone accumulation and modification. Now that several taphonomic techniques allow identifying carnivore modification of bones, a next step involves determining carnivore type. This is of utmost importance to determine which carnivores were preying on and competing with hominins and what types of interaction existed among them during prehistory. Computer vision techniques using deep architectures of convolutional neural networks (CNN) have enabled significantly higher resolution in the identification of bone surface modifications (BSM) than previous methods. Here, we apply these techniques to test the hypothesis that different carnivores create specific BSM that can enable their identification. To make differentiation more challenging, we selected two types of carnivores (lions and jaguars) that belong to the same mammal family and have similar dental morphology. We hypothesize that if two similar carnivores can be identified by the BSM they imprint on bones, then two more distinctive carnivores (e.g. hyenids and felids) should be more easily distinguished. The CNN method used here shows that tooth scores from both types of felids can be successfully classified with an accuracy greater than 82%. The first hypothesis was successfully tested. The next step will be to differentiate diverse carnivore types involving a wider range of carnivore-made BSM. The present study demonstrates that resolution increases when combining two different disciplines (taphonomy and artificial intelligence computing) in order to test new hypotheses that could not be addressed with traditional taphonomic methods.
Humans are unique in their diet, physiology and socio-reproductive behavior compared to other primates. They are also unique in the ubiquitous adaptation to all biomes and habitats. From an evolutionary perspective, these trends seem to have started about two million years ago, coinciding with the emergence of encephalization, the reduction of the dental apparatus, the adoption of a fully terrestrial lifestyle, resulting in the emergence of the modern anatomical bauplan, the focalization of certain activities in the landscape, the use of stone tools, and the exit from Africa. It is in this period that clear taphonomic evidence of a switch in diet with respect to Pliocene hominins occurred, with the adoption of carnivory. Until now, the degree of carnivorism in early humans remained controversial. A persistent hypothesis is that hominins acquired meat irregularly (potentially as fallback food) and opportunistically through klepto-foraging. Here, we test this hypothesis and show, in contrast, that the butchery practices of early Pleistocene hominins (unveiled through systematic study of the patterning and intensity of cut marks on their prey) could not have resulted from having frequent secondary access to carcasses. We provide evidence of hominin primary access to animal resources and emphasize the role that meat played in their diets, their ecology and their anatomical evolution, ultimately resulting in the ecologically unrestricted terrestrial adaptation of our species. This has major implications to the evolution of human physiology and potentially for the evolution of the human brain.
In this paper, we apply Machine Learning (ML) algorithms to study the differences between Discoid and Centripetal Levallois methods. For this purpose, we have used experimentally knapped flint flakes, measuring several parameters that have been analyzed by seven ML algorithms. From these analyses, it has been possible to demonstrate the existence of statistically significant differences between Discoid products and Centripetal Levallois products, thus contributing with new data and a new method to this traditional debate. The new approach enabled differentiating the blanks created by both knapping methods with an accuracy >80% using only ten typometric variables. The most relevant variables were maximum length, width to the 25%, 50% and 75% of the flake length, external and internal platform angles, maximum width and number of dorsal scars. This study also demonstrates the advantages of the application of multivariate ML methods to lithic studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.