Mosses are a highly diverse lineage of land plants, whose diversification, spanning at least 400 million years, remains phylogenetically ambiguous due to the lack of fossils, massive early extinctions, late radiations, limited morphological variation, and conflicting signal among previously used markers. Here, we present phylogenetic reconstructions based on complete organellar exomes and a comparable set of nuclear genes for this major lineage of land plants. Our analysis of 142 species representing 29 of the 30 moss orders reveals that relative average rates of non-synonymous substitutions in nuclear versus plastid genes are much higher in mosses than in seed plants, consistent with the emerging concept of evolutionary dynamism in mosses. Our results highlight the evolutionary significance of taxa with reduced morphologies, shed light on the relative tempo and mechanisms underlying major cladogenic events, and suggest hypotheses for the relationships and delineation of moss orders.
Peatlands are crucial sinks for atmospheric carbon but are critically threatened due to warming climates. Sphagnum (peat moss) species are keystone members of peatland communities where they actively engineer hyperacidic conditions, which improves their competitive advantage and accelerates ecosystem-level carbon sequestration. To dissect the molecular and physiological sources of this unique biology, we generated chromosome-scale genomes of two Sphagnum species: S. divinum and S. angustifolium. Sphagnum genomes show no gene colinearity with any other reference genome to date, demonstrating that Sphagnum represents an unsampled lineage of land plant evolution. The genomes also revealed an average recombination rate an order of magnitude higher than vascular land plants and short putative U/V sex chromosomes. These newly described sex chromosomes interact with autosomal loci that significantly impact growth across diverse pH conditions. This discovery demonstrates that the ability of Sphagnum to sequester carbon in acidic peat bogs is mediated by interactions between sex, autosomes and environment.
Oil bodies are the unique feature of most liverworts. Their shape, color and distribution pattern in leaf and underleaf cells are important taxonomic features of the genus Calypogeia. Most species of the genus Calypogeia have pellucid and colorless oil bodies, whereas colored, including gray to pale brown, purple-brown or blue oil bodies, are rare. To date, C. azurea was the only species with blue oil bodies to have been considered as a species of the Holarctic range. This species has been noted in various parts of the northern hemisphere–from North America, through Europe to the Far East. The aim of this study was to determine the genetic diversity of C. azurea from different parts of its distribution range and to ascertain whether blue oil bodies appeared once or several times in the evolution of the genus Calypogeia. The phylogenetic analyses based on four plastid regions (rbcL, trnG, trnL, trnH-psbA) and one nuclear region (ITS2) revealed that C. azurea is presently a paraphyletic taxon, with other Calypogeia species nested among C. azurea accessions that were clustered into four different clades. Based on the level of genetic divergence (1.03–2.17%) and the observed morphological, ecological and geographical differences, the evaluated clades could be regarded as previously unrecognized species. Four species were identified: C. azurea Stotler & Crotz (a European species corresponding to the holotype), two new species from Pacific Asia—C. orientalis Buczkowska & Bakalin and C. sinensis Bakalin & Buczkowska, and a North American species which, due to the lack of identifiable morphological features, must be regarded as the cryptic species of C. azurea with a provisional name of C. azurea species NA.
Plants that reproduce with spores rather than seeds, including the bryophytes, lycophytes, and monilophytes, are generally thought to have broad ranges that often span multiple continents (Schofield and Crum, 1972). It has been estimated that ~70% of the mosses found in Europe also occur in North America (Frahm and Vitt, 1993). Indeed, a perusal of the bryophyte volumes in the Flora of North America indicate that as presently understood, most temperate and boreal bryophyte species are recorded from multiple continents. Moreover, a substantial number of Neotropical bryophytes are also reported from Africa and/or other tropical continental areas (Gradstein et al., 1983). Consistent with the general pattern of bryophytes having broad, often intercontinental ranges is that many south-temperate bryophyte species are thought to occur disjunctively between Australia/New Zealand and South America, with low rates of endemism in any one area (such as New Zealand) (Muñoz et al., 2004). By contrast, most seed-plant species are restricted to a single continent; Qian (1999) estimated that only ~6% of vascular plants are shared between North America and Europe. Notwithstanding issues such as how to define what constitutes a species, heterogeneity among plant groups in genetic/phylogenetic structure, and differences in the approaches of different taxonomists, the general pattern that spore plants have broader ranges than seed plants has been uncontroversial (but see Vigalondo et al., 2019).
Sphagnum magellanicum is one of two Sphagnum species for which a reference-quality genome exists to facilitate research in ecological genomics.Phylogenetic and comparative genomic analyses were conducted based on resequencing data from 48 samples and RADseq analyses based on 187 samples.We report herein that there are four clades/species within the S. magellanicum complex in eastern North America and that the reference genome belongs to Sphagnum divinum. The species exhibit tens of thousands (RADseq) to millions (resequencing) of fixed nucleotide differences. Two species, however, referred to informally as S. diabolicum and S. magni because they have not been formally described, are differentiated by only 100 (RADseq) to 1000 (resequencing) of differences. Introgression among species in the complex is demonstrated using D-statistics and f 4 ratios. One ecologically important functional trait, tissue decomposability, which underlies peat (carbon) accumulation, does not differ between segregates in the S. magellanicum complex, although previous research showed that many closely related Sphagnum species have evolved differences in decomposability/carbon sequestration.Phylogenetic resolution and more accurate species delimitation in the S. magellanicum complex substantially increase the value of this group for studying the early evolutionary stages of climate adaptation and ecological evolution more broadly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.