Various fungal species can degrade lignocellulolytic materials with their enzyme cocktails composed of cellulolytic and lignolytic enzymes. In this work, seven fungal species (Mucor indicus DSM 2185, Paecilomyces variotii CBS 372.70, Myceliophthora thermophila CBS 663.74, Thielavia terrestris CBS 456.75, Botryosphaeria dothidea JCM 2738, Fusarium oxysporum f.sp. langenariae JCM 9293, and Fusarium verticillioides JCM 23107) and four nutrient media were used in the screening for effective lignocellulose degrading enzymes. From the seven tested fungi, F. oxysporum and F. verticilliodes, along with nutrient medium 4, were selected as the best medium and producers of lignocellulolytic enzymes based on the determined xylanase (>4 U mg−1) and glucanase activity (≈2 U mg−1). Nutrient medium 4 supplemented with pretreated corn cobs was used in the production of lignocellulolytic enzymes by sequential solid-state and submerged cultivation of F. oxysporum, F. verticilliodes, and a mixed culture of both strains. F. oxysporum showed 6 times higher exoglucanase activity (3.33 U mg−1) after 5 days of cultivation in comparison with F. verticillioides (0.55 U mg−1). F. oxysporum also showed 2 times more endoglucanase activity (0.33 U mg−1). The mixed culture cultivation showed similar endo- and exoglucanase activities compared to F. oxysporum (0.35 U mg−1; 7.84 U mg−1). Maximum xylanase activity was achieved after 7 days of cultivation of F. verticilliodes (≈16 U mg−1), while F. oxysporum showed maximum activity after 9 days that was around 2 times lower compared to that of F. verticilliodes. The mixed culture achieved maximum xylanase activity after only 4 days, but the specific activity was similar to activities observed for F. oxysporum. It can be concluded that both fungal strains can be used as producers of enzyme cocktails for the degradation of lignocellulose containing raw materials, and that corn cobs can be used as an inducer for enzyme production.
Alternative to the use of fossil fuels are biofuels (e.g., bioethanol, biodiesel and biogas), which are more environmentally friendly and which can be produced from different renewable resources. In this investigation, bioethanol production from raw sugar beet cossettes (semi-solid substrate) by yeast Saccharomyces cerevisiae in a horizontal rotating tubular bioreactor (HRTB) was studied. Obtained results show that HRTB rotation mode (constant or interval) and rotation speed have considerable impact on the efficiency of bioethanol production in the HRTB. The main goal of this research was to develop a non-structural mathematical model of bioethanol production from raw sugar beet cossettes in the HRTB. The established mathematical model of bioethanol production in the HRTB describes substrate utilization and product formation (glycerol, ethanol and acetate) and presumes negative impact of high substrate concentration on the working microorganism (substrate inhibition) by using Andrews inhibition kinetics. All simulations of bioethanol production in the HRTB were performed by using Berkeley Madonna software, version 8.3.14 (Berkeley Madonna, Berkeley, CA, USA). The established non-structural bioprocess model describes relatively well the bioethanol production from raw sugar beet cossettes in the HRTB.
Brewers’ spent grains (BSG) are a by-product of the brewing industry that is mainly used as feedstock; otherwise, it has to be disposed according to regulations. Due to the high content of glucose and xylose, after pretreatment and hydrolysis, it can be used as a main carbohydrate source for cultivation of microorganisms for production of biofuels or biochemicals like 2,3-butanediol or lactate. 2,3-Butanediol has applications in the pharmaceutical or chemical industry as a precursor for varnishes and paints or in the food industry as an aroma compound. So far, Klebsiella pneumoniae, Serratia marcescens, Clostridium sp., and Enterobacter aerogenes are being used and investigated in different bioprocesses aimed at the production of 2,3-butanediol. The main drawback is bacterial pathogenicity which complicates all production steps in laboratory, pilot, and industrial scales. In our study, a gram-positive GRAS bacterium Paenibacillus polymyxa DSM 742 was used for the production of 2,3-butanediol. Since this strain is very poorly described in literature, bacterium cultivation was performed in media with different glucose and/or xylose concentration ranges. The highest 2,3-butanediol concentration of 18.61 g l–1 was achieved in medium with 70 g l–1 of glucose during 40 h of fermentation. In contrast, during bacterium cultivation in xylose containing medium there was no significant 2,3-butanediol production. In the next stage, BSG hydrolysates were used for bacterial cultivation. P. polymyxa DSM 742 cultivated in the liquid phase of pretreated BSG produced very low 2,3-butanediol and ethanol concentrations. Therefore, this BSG hydrolysate has to be detoxified in order to remove bacterial growth inhibitors. After detoxification, bacterium cultivation resulted in 30 g l–1 of lactate, while production of 2,3-butanediol was negligible. The solid phase of pretreated BSG was also used for bacterium cultivation after its hydrolysis by commercial enzymes. In these cultivations, P. polymyxa DSM 742 produced 9.8 g l–1 of 2,3-butanediol and 3.93 g l–1 of ethanol. On the basis of the obtained results, it can be concluded that different experimental setups give the possibility of directing the metabolism of P. polymyxa DSM 742 toward the production of either 2,3-butanediol and ethanol or lactate.
Značajne količine raznovrsnih ostataka (odnosno lignocelulozne biomase) nastaju u poljoprivredi, prehrambenoj industriji i šumarstvu. Stoga je važno podići svijest o mogućnostima primjene takvih materijala koji se u današnje vrijeme ne bi trebali tretirati kao otpad, već se mogu koristiti kao obnovljive biotehnološke sirovine za proizvodnju kemikalija, drugih visokovrijednih proizvoda i biogoriva. Lignocelulozni materijal uglavnom sadrži celulozu, hemicelulozu i lignin. Predmet interesa ovog rada je lignocelulozni otpad iz poljoprivrede i prehrambene industrije kao mogući sirovinski temelj za napredak održive biotehnološke proizvodnje u Republici Hrvatskoj. Razmotrene su dostupne količine ovih lignoceluloznih sirovina, tipovi bioprocesa u kojima se one mogu koristiti, postupci predobrade koje je neophodno provesti prije provedbe samog bioprocesa te vrste biotehnoloških proizvoda koje je moguće dobiti.
Glavni proizvod anaerobne digestije je bioplin, koji je obnovljivo gorivo, a sporedni proizvod ovog procesa je digestat, koji se koristi kao gnojivo bogato hranjivim tvarima. Dodatni pozitivni učinci anaerobne digestije su razgradnja organskog otpada te smanjenje neugodnih mirisa i koncentracije patogenih mikroorganizama. Bioplin se uglavnom koristi za proizvodnju električne energije i topline, a u nekim slučajevima se pročišćava da bi se dobio biometan koji se koristi u mreži prirodnog plina, kao gorivo za motore s unutarnjim sagorijevanjem ili kao polazna kemikalija za kemijsku industriju. Zbog svega navedenog, razvoj proizvodnje bioplina ima pozitivne društveno-ekonomske i ekološke učinke. Bioplin proizveden u Hrvatskoj većinom se koristi za proizvodnju električne i toplinske energije u kogeneracijskim postrojenjima. Iako su u Hrvatskoj dostupne različite obnovljive sirovine koje bi se mogle iskoristiti za proizvodnju bioplina, njihov je potencijal do sada bio nedovoljno iskorišten. Kao sirovine za proizvodnju bioplina u nas se pretežno koriste gnojovka i nusproizvodi poljoprivrede, klaonica i prehrambene industrije. Racionalnijim korištenjem zemljišta i razvojem prehrambene industrije mogla bi se povećati količina poljoprivrednih ostataka i nusproizvoda koji nastaju preradom hrane. Usmjeravanjem i poticanjem korištenja ovih nusproizvoda za anaerobnu digestiju može se stimulirati brži razvoj proizvodnje bioplina u Hrvatskoj. Pored mogućeg povećanja vlastite proizvodnje električne energije i goriva, radi se o ekološki povoljnoj tehnologiji koja ima pozitivan društveno-ekonomski učinak.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.