A series of fatty acid anilides was prepared, and compounds were tested for their ability to inhibit the enzyme acyl-CoA:cholesterol acyltransferase (ACAT) in vitro and to lower plasma total cholesterol and elevate high-density lipoprotein cholesterol in cholesterol-fed rats in vivo. The compounds reported were found to fall into two subclasses with different anilide SAR. For nonbranched acyl analogues, inhibitory potency was found to be optimal with bulky 2,6-dialkyl substitution. For alpha-substituted acyl analogues, there was little dependence of in vitro potency on anilide substitution and 2,4,6-trimethoxy was uniquely preferred. Most of the potent inhibitors (IC50 less than 50 nM) were found to produce significant reductions in plasma total cholesterol in cholesterol-fed rats. Additionally, in vivo activity could be improved significantly by the introduction of alpha,alpha-disubstitution into the fatty acid portion of the molecule. A narrow group of alpha,alpha-disubstituted trimethoxyanilides, exemplified by 2,2-dimethyl-N-(2,4,6-trimethoxyphenyl)dodecanamide (39), was found to not only lower plasma total cholesterol (-60%) in cholesterol-fed rats but also elevate levels of high-density lipoprotein cholesterol (+94%) in this model at the screening dose of 0.05% in the diet (ca. 50 mg/kg).
A series of 51 6-arylpyrido[2,3-d]pyrimidin-7-amine derivatives was prepared and evaluated for antihypertensive activity in the conscious spontaneously hypertensive rat. A number of these compounds, notably 6-(2,6-dichlorophenyl)-2-methylpyrido[2,3-d]pyrimidin-7-amine (36), lowered blood pressure in these rats in a gradual and sustained manner to normotensive levels at oral doses of 10-50 mg/kg. Normalized blood pressure levels could then be maintained by single daily oral doses. The effect of structural variation in the 6-aryl group and in the 2 and 4 positions of the pyridopyrimidine ring on activity is reported and discussed.
A series of disubstituted ureas containing amide or amine groups was prepared and evaluated for their ability to inhibit acyl-CoA:cholesterol O-acyl transferase in vitro and to lower plasma total cholesterol in a variety of cholesterol-fed rat models in vivo. The presence of polar or ionizable functionalities within this class of compounds may impart greater aqueous solubility to those compounds and thus allow improved transport to the enzyme location within the intestinal enterocyte. Compounds from this class exhibit good cholesterol lowering in a chronic cholesterol-fed rat model of hypercholesterolemia even when dosed in an aqueous vehicle. In general, the amine-containing compounds were more potent and efficacious than the amides in the acute rat model of hypercholesterolemia. Further structure-activity relationship studies showed that the preferred position of the amide/amine group was beta to the urea moiety and not alpha, and that in this series, the presence of a secondary amine (or amide) proton is required for good in vitro potency. One of these compounds, 9n(-), lowered plasma total cholesterol (-47%) and elevated high-density lipoprotein cholesterol (+256%) when dosed in an aqueous vehicle to rats with preestablished hypercholesterolemia.
The synthesis and angiotensin converting enzyme (ACE) inhibiting activities of quinapril (CI-906, 22), its active diacid (CI-928, 33), and its dimethoxy analogue (CI-925, 25) are reported. These tetrahydro-3-isoquinolinecarboxylic acid derivatives possess equivalent in vitro potency and in vivo efficacy to enalapril. Sulfhydryl analogues with the same structural variation are also highly potent. In contrast, tetrahydro-1-isoquinolinecarboxylic acid and homologous isoindoline-1-carboxylic acid analogues show a striking divergence in potency between the two types, sulfhydryl analogues being essentially inactive, while non-sulfhydryl analogues are equipotent with the proline prototype. This is the first evidence suggesting that alternate binding modes may exist for the two major structural classes of small molecule ACE inhibitors.
A series of esters of 1,4-disubstituted tetrahydropyridine carboxylic acids (I) has been synthesized and characterized as potential m1 selective muscarinic receptor antagonists. The affinity of these compounds for the five human muscarinic receptor subtypes (Hm1-Hm5) was determined by the displacement of [3H]-NMS binding using membranes from transfected Chinese hamster ovarian cells. One of the most potent and selective compounds of this series is an analogue of I [11, R1 = (CH2)5CH3], which has an IC50 value of 27.3 nM at the m1 receptor and possesses 100-fold (m2), 48-fold (m3), 74-fold (m4), and 19-fold (m5) selectivities at the other receptors. Thus, this analogue appears to be more selective on the basis of binding than the prototypical m1 antagonist, pirenzepine. Functional data, such as the inhibition of carbachol-stimulated phosphatidylinositol hydrolysis, on selected analogues confirmed the muscarinic antagonistic properties of this chemical series.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.