A new paradigm for data-driven, model-agnostic new physics searches at colliders is emerging, and aims to leverage recent breakthroughs in anomaly detection and machine learning. In order to develop and benchmark new anomaly detection methods within this framework, it is essential to have standard datasets. To this end, we have created the LHC Olympics 2020, a community challenge accompanied by a set of simulated collider events. Participants in these Olympics have developed their methods using an R&D dataset and then tested them on black boxes: datasets with an unknown anomaly (or not). Methods made use of modern machine learning tools and were based on unsupervised learning (autoencoders, generative adversarial networks, normalizing flows), weakly supervised learning, and semi-supervised learning. This paper will review the LHC Olympics 2020 challenge, including an overview of the competition, a description of methods deployed in the competition, lessons learned from the experience, and implications for data analyses with future datasets as well as future colliders.
Research on soft-biometrics showed that privacy-sensitive information can be deduced from biometric data. Utilizing biometric templates only, information about a persons gender, age, ethnicity, sexual orientation, and health state can be deduced. For many applications, these templates are expected to be used for recognition purposes only. Thus, extracting this information raises major privacy issues. Previous work proposed two kinds of learning-based solutions for this problem. The first ones provide strong privacy-enhancements, but limited to pre-defined attributes. The second ones achieve more comprehensive but weaker privacy-improvements. In this work, we propose a Privacy-Enhancing face recognition approach based on Minimum Information Units (PE-MIU). PE-MIU, as we demonstrate in this work, is a privacy-enhancement approach for face recognition templates that achieves strong privacy-improvements and is not limited to pre-defined attributes. We exploit the structural differences between face recognition and facial attribute estimation by creating templates in a mixed representation of minimal information units. These representations contain pattern of privacy-sensitive attributes in a highly randomized form. Therefore, the estimation of these attributes becomes hard for function creep attacks. During verification, these units of a probe template are assigned to the units of a reference template by solving an optimal best-matching problem. This allows our approach to maintain a high recognition ability. The experiments are conducted on three publicly available datasets and with five state-of-the-art approaches. Moreover, we conduct the experiments simulating an attacker that knows and adapts to the systems privacy mechanism. The experiments demonstrate that PE-MIU is able to suppress privacy-sensitive information to a significantly higher degree than previous work in all investigated scenarios. At the same time, our solution is able to achieve a verification performance close to that of the unmodified recognition system. Unlike previous works, our approach offers a strong and comprehensive privacy-enhancement without the need of training.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.