A series of disubstituted 1H-pyrazoles with methyl (1), amino (2), and nitro (3) groups, as well as ester (a) or amide (b) groups in positions 3 and 5 was synthesized, and annular tautomerism was investigated using X-ray, theoretical calculations, NMR, and FT-IR methods. The X-ray experiment in the crystal state showed for the compounds with methyl (1a, 1b) and amino (2b) groups the tautomer with ester or amide groups at position 3 (tautomer 3), but for those with a nitro group (3b, 4), tautomer 5. Similar results were obtained in solution by NMR NOE experiments in CDCl3, DMSO-d6, and CD3OD solvents. However, tautomer equilibrium was observed for 2b in DMSO. The FT-IR spectra in chloroform and acetonitrile showed equilibria, which can be ascribed to conformational changes of the cis/trans arrangement of the ester/amide group and pyrazole ring. Theoretical analysis using the M06-2X/6-311++G(d,p) method (in vacuo, chloroform, acetonitrile, and water) and measurement of aromaticity (NICS) showed dependence on internal hydrogen bonds, the influence of the environment, and the effect of the substituent. These factors, pyrazole aromaticity and intra- and inter-molecular interactions, seem to have a considerable influence on the choice of tautomer.
Planarity of the amide bond represents one of the most widely recognized properties of amides. Herein, we report a combined structural and computational study on the effect of ortho-substitution on resonance and barriers to rotation in tertiary aromatic amides. We demonstrate that ortho-chloro substitution in a class of benzamides that are important from the reactivity and medicinal chemistry perspective results in increased barriers to rotation around both the N-C(O) and C-C(O) axes. The effect of steric hindrance on structures, resonance energies, barriers to rotation, and proton affinities is discussed. The present study strongly supports the use of ortho-substitution in common benzamides to strengthen amidic resonance.
We report the Pd-catalyzed Suzuki−Miyaura cross-coupling of aliphatic amides. Although tremendous advances have been made in the cross-coupling of aromatic amides, C−C bond formation from aliphatic amides by selective N−C(O) cleavage has remained a major challenge. This longstanding problem in Pd catalysis has been addressed herein by a combination of (1) the discovery of N,N-pym/Boc amides as a class of readily accessible amide-based reagents for cross-coupling and (2) steric tuning of well-defined Pd(II)-NHC catalysts for cross-coupling. The methodology is effective for the cross-coupling of an array of 3°, 2°, and 1°aliphatic amide derivatives. The catalyst system is user-friendly, since the catalysts are readily available and are air-and benchstable. Mechanistic studies strongly support an amide bond twist and external n N → π* CO/Ar delocalization as a unified enabling feature of N,N-pym/Boc amides in selective N−C(O) bond activation. The method provides a rare example of Pd-NHC-catalyzed cross-coupling of aliphatic acyl amide electrophiles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.