Vaccines are one of the oldest biological products which are most successful in modulating immune response against various life-threatening infectious diseases. Currently, there are many advancements in the designing and delivery of vaccines. Starting from the use of live attenuated and dead microbes as vaccines, to the stage of mapping antibodies using various software and algorithms for designing desired vaccine, the journey has taken many turns in the last two centuries. Current write up gives a glimpse of various developments in the development of vaccines as well as delivery strategies like use of immunoinformatics, artifi cial intelligence and efforts made towards the delivery of vaccines using nanoparticles, vectors, hydrogels as adjuancts.
Nanoparticles in different field of science have a wide range of utility. They come in different forms. Among these, metal nanoparticles (MNP) have become an emerging tool for diagnostic as well as for therapeutic purposes. Metal nanoparticles are nano-sized particles made up of inorganic metals or their metal oxides. Various methods are available for the preparation/production of metal nanoparticles. In addition to the existing physical and chemical methods, green synthesis is an area that has drawn the attention of researchers in the decade and continues to be a potential area of research. The following review introduces about metal nanoparticles and discusses in details about the plant extract mediated metal nanoparticles synthesis, the principle of metal nanoparticle formation, various process parameters that are important for its synthesis, characterization of metal nanoparticles and the scope for commercialization are elaborated. Metal nanoparticles at research, employing plant extract mediated green synthesis have been extensively reviewed. This review tries to bring into light the feasibility of commercializing the green synthesis by using plant extracts. Keywords: Green synthesis; Plant extract; One-step synthesis; Characterization; Process parameters; Scale-up
Nanocomposites are substances that incorporate nanoparticles (0.5-5% by weight) into a matrix of standard material, which enhances the mechanical strength, toughness including thermal or electrical conductivity and other properties. Nanocomposites are versatile in terms of their applications such as anti-corrosive, healing of bones, sensors, environmental protection, packaging, wastewater treatment, and diagnosis of tumors and other diverse uses. They may be fabricated by blending nanofillers with a polymer to produce a composite. The current trend of processing is by polymerizing monomers. Nanocomposites serve as sustainable solutions to curb global issues. Evaluation is performed on properties such as mechanical, thermal, dispersion, and toxicological. Some marketed products of nanocomposites include In Mat (coating), FiltekZ350 XT by 3M (tooth fillers), chitosan/organic rectorite nanocomposite films (bactericidal activity), graphene oxide/Carboxymethylcellulose (targeted drug delivery of anti-cancer drug doxorubicin), MD1 Flex, Nano Clean MD1, Plactive TM (Antimicrobial nanocomposites) and NovaProTM(Tooth fillers). This article discusses about Nanocomposites–their types, preparation methods, recent research and applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.