Background: Neuromuscular Electrical Stimulation (NMES) has been utilized for many years in cerebral palsy (CP) with limited success despite its inherent potential for improving muscle size and/or strength, inhibiting or reducing spasticity, and enhancing motor performance during functional activities such as gait. While surface NMES has been shown to successfully improve foot drop in CP and stroke, correction of more complex gait abnormalities in CP such as flexed knee (crouch) gait remains challenging due to the level of stimulation needed for the quadriceps muscles that must be balanced with patient tolerability and the ability to deliver NMES assistance at precise times within a gait cycle. Methods: This paper outlines the design and evaluation of a custom, noninvasive NMES system that can trigger and adjust electrical stimulation in real-time. Further, this study demonstrates feasibility of one possible application for this digitally-controlled NMES system as a component of a pediatric robotic exoskeleton to provide on-demand stimulation to leg muscles within specific phases of the gait cycle for those with CP and other neurological disorders who still have lower limb sensation and volitional control. A graphical user interface was developed to digitally set stimulation parameters (amplitude, pulse width, and frequency), timing, and intensity during walking. Benchtop testing characterized system delay and power output. System performance was investigated during a single session that consisted of four overground walking conditions in a 15-year-old male with bilateral spastic CP, GMFCS Level III: (1) his current Ankle-Foot Orthosis (AFO); (2) unassisted Exoskeleton; (3) NMES of the vastus lateralis; and (4) NMES of the vastus lateralis and rectus femoris. We hypothesized in this participant with crouch gait that NMES triggered with low latency to knee extensor muscles during stance would have a modest but positive effect on knee extension during stance.
Background Adaptive gait involves the ability to adjust the leading foot in response to the requirement of dynamic environments during walking. Accurate adjustments of the minimum toe clearance (MTC) height and step length can prevent older people from falling when walking and responding to hazards. Although older people with diabetes fall more frequently than healthy older adults, no previous studies have quantified their adaptive gait abilities. This study aimed to investigate the effects of diabetes mellitus on step length and MTC height adjustments using a non-immersive virtual-reality system. Methods Sixteen young adults (26 ± 5 years, 7 females), 16 healthy older adults (68 ± 5 years, 6 females), and 16 older adults with diabetes (70 ± 5 years, 6 females) completed adaptability tests while walking on a treadmill. A computer system visualised a continuous real-time signal of absolute step length and MTC on a monitor. Each person responded to four discrete participant-specific step length and MTC visual targets that were presented on the same signal. Tasks were to match the peaks of interest on each signal to presented targets. Targets were 10% longer or shorter than the mean baseline step length, and 2.5 cm, and 3.5 cm higher than the mean baseline MTC. When a target was displayed, it remained unchanged for 10 consecutive foot displacement adaptation attempts. Then, the target was removed and a new target or the same target was present after 10 consecutive steps and remained for 10 steps. Each target was randomly presented three times (3 × 10). Step length and MTC height adjustments in response to targets were measured and compared among groups. Results Mean preferred walking speeds were not different among groups significantly when no targets were presented on the monitor in baseline walking. However, when participants walked on a treadmill while attempting to match step lengths or MTC heights to displayed targets on the monitor, the group with diabetes had reduced step length and MTC adjustments compared with other groups significantly. They showed greater errors (differences between their step lengths/MTC heights and presented targets) on the monitor. Conclusions This study quantified reduced abilities for older individuals with diabetes to adjust both step length and MTC in response to stimuli compared to healthy older counterparts. Reduced step length and MTC height adjustments can increase falls in at risk populations. The presented virtual-reality system has merits for assessing and training step and MTC adaptation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.