Dinorhynchus dybowskyi (Hemiptera: Pentatomidae: Asopinae) is used as a biological control agent against various insect pests for its predatory. In the present study, the complete mitochondrial genome (mitogenome) of the species was sequenced using the next-generation sequencing technology. The results showed that the mitogenome is 15,952 bp long, including 13 protein-coding genes (PCGs), 22 transfer RNAs (tRNAs), two ribosomal RNAs (rRNAs), and a control region. Furthermore, the gene order and orientation of this mitogenome are identical to those of most heteropterans. There are 21 intergenic spacers (of length 1–28 bp) and 13 overlapping regions (of length 1–23 bp) throughout the genome. The control region is 1,291 bp long. The start codon of the PCGs is ATN, except cox1 (TTG), and stop codon is TAA, except nad1 (TAG). The 22 tRNAs exhibit a typical cloverleaf secondary structure, except trnS1, which lacks a dihydrouridine (DHU) arm and trnV, where the DHU arm forms a simple loop. The analyses based on nucleotide sequences of the 13 PCGs by Bayesian Inference and maximum likelihood methods. The results support the monophyly of five superfamilies Aradoidea, Pentatomoidea, Pyrrhocoroidea, Lygaeoidea, and Coreoidea. Within Pentatomoidea, the relationship observed is as follows: (Plataspidae + Urostylididae) + (Pentatomidae + (Acanthosomatidae + (Cydnidae + (Scutelleridae + (Dinidoridae + Tessaratomidae))))), and D. dybowskyi was placed in Pentatomidae and close to Eurydema gebleri.
The adult female, adult male and all immature stages (except the male prepupa and pupa) of a new species of Fiorinia (Hemiptera: Coccomorpha: Diaspididae), F. yongxingensis Liu, Cai & Feng sp. n., collected from Hainan Province, China, are described and illustrated. A key is provided to identify the Fiorinia species known to occur in Hainan Province, China. The new species may become a significant pest on coconut palms.
The Oriental garden lizard (Calotes versicolor) is one of the few non-gekkonid lizards that are geographically widespread in the tropics. We investigated its population dynamics on Hainan Island and the adjacent mainland of China and Vietnam, focusing on the impact of cyclic upheaval and submergence of land bridges during the Pleistocene. Our Bayesian phylogenetic analysis reveals two mitochondrial lineages, A and B, which are estimated to have coalesced about 0.26 million years ago (95% credibility interval: 0.05–0.61 million years ago). Lineage A contains individuals mainly from central and southern Wuzhi Mountain on Hainan Island, whereas lineage B mainly comprises individuals from other sites on the island plus the adjacent mainland. The estimated coalescence times within lineages A (0.05 million years ago) and B (0.13 million years ago) fall within a period of cyclical land-bridge formation and disappearance in the Pleistocene. A spatial analysis of molecular variance identified two distinct population groupings: I, primarily containing lineage A, and II, mainly consisting of lineage B. However, haplotypes from lineages A and B occur sympatrically, suggesting that gene flow is ongoing. Neither Wuzhi Mountain nor Qiongzhou Strait and Gulf of Tonkin act as barriers to gene flow among C. versicolor populations. Analyses of the data using mismatch distributions and extended Bayesian skyline plots provide evidence of a relatively stable population size through time for Group I, and moderate population expansions and contractions during the end of the Pleistocene for Group II. We conclude that the phylogeographical patterns of C. versicolor are the combined product of Pleistocene sea-level oscillations and nonphysical barriers to gene flow.
List Categories and Criteria (Version 3.1) (IUCN, 2012a); (2) Guidelines for Using the IUCN Red List Categories and Criteria (Version 8.1) (IUCN Standards and Petitions Subcommittee, 2010); (3) Guidelines for Application of IUCN Red List Criteria at Regional and National Levels (Version 4.0) (IUCN, 2012b)。 本次评估使用了以下IUCN等级: 灭绝(Extinct, EX)、野外灭绝(Extinct in the Wild, EW)、区域灭绝
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.