Relationships among objects play a crucial role in image understanding. Despite the great success of deep learning techniques in recognizing individual objects, reasoning about the relationships among objects remains a challenging task. Previous methods often treat this as a classification problem, considering each type of relationship (e.g. "ride") or each distinct visual phrase (e.g. "personride-horse") as a category. Such approaches are faced with significant difficulties caused by the high diversity of visual appearance for each kind of relationships or the large number of distinct visual phrases. We propose an integrated framework to tackle this problem. At the heart of this framework is the Deep Relational Network, a novel formulation designed specifically for exploiting the statistical dependencies between objects and their relationships. On two large data sets, the proposed method achieves substantial improvement over state-of-the-art.
Despite the substantial progress in recent years, the image captioning techniques are still far from being perfect. Sentences produced by existing methods, e.g. those based on RNNs, are often overly rigid and lacking in variability. This issue is related to a learning principle widely used in practice, that is, to maximize the likelihood of training samples. This principle encourages high resemblance to the "ground-truth" captions, while suppressing other reasonable descriptions. Conventional evaluation metrics, e.g. BLEU and METEOR, also favor such restrictive methods. In this paper, we explore an alternative approach, with the aim to improve the naturalness and diversity -two essential properties of human expression. Specifically, we propose a new framework based on Conditional Generative Adversarial Networks (CGAN), which jointly learns a generator to produce descriptions conditioned on images and an evaluator to assess how well a description fits the visual content. It is noteworthy that training a sequence generator is nontrivial. We overcome the difficulty by Policy Gradient, a strategy stemming from Reinforcement Learning, which allows the generator to receive early feedback along the way. We tested our method on two large datasets, where it performed competitively against real people in our user study and outperformed other methods on various tasks.
Learning a good image prior is a long-term goal for image restoration and manipulation. While existing methods like deep image prior (DIP) capture low-level image statistics, there are still gaps toward an image prior that captures rich image semantics including color, spatial coherence, textures, and high-level concepts. This work presents an effective way to exploit the image prior captured by a generative adversarial network (GAN) trained on large-scale natural images. As shown in Fig. 1, the deep generative prior (DGP) provides compelling results to restore missing semantics, e.g., color, patch, resolution, of various degraded images. It also enables diverse image manipulation including random jittering, image morphing, and category transfer. Such highly flexible restoration and manipulation are made possible through relaxing the assumption of existing GAN-inversion methods, which tend to fix the generator. Notably, we allow the generator to be fine-tuned on-the-fly in a progressive manner regularized by feature distance obtained by the discriminator in GAN. We show that these easy-toimplement and practical changes help preserve the reconstruction to remain in the manifold of nature image, and thus lead to more precise and faithful reconstruction for real images. Code is available at https://github.com/XingangPan/deepgenerative-prior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.