Polycystic ovary syndrome (PCOS) is a common endocrine disorder with unknown etiology and unsatisfactory clinical treatment. Considering the ethical limitations of studies involving humans, animal models that reflect features of PCOS and insulin resistance (IR) are crucial resources in investigating this syndrome. Our previous study showed that mitochondrial dysfunction resulted from pathogenic mutations of mitochondrial DNA (mtDNA), and that oxidative stress had an active role in the phenotypic manifestation of PCOS-IR. Therefore, it was hypothesized that limiting oxidative stress and mitochondrial damage may be useful and effective for the clinical treatment of PCOS-IR. For this purpose, the present study examined the therapeutic effects of the mitochondria-targeted antioxidant MitoQ10 for PCOS-IR. Furthermore, the histopathology was used to analysis the ovarian morphological changes. The endocrine and reproductive related parameters were analyzed by ELISA approach. A PCOS-IR model was successfully established by subcutaneous injection of rats with testosterone propionate and feeding a high-fat diet. The 30 female Sprague-Dawley rats were then divided into three groups, comprising a control (n=10), animal model (PCOS-IR, n=10) and MitoQ10 treatment (n=10) group. It was found that MitoQ10 significantly improved the IR condition and reversed the endocrine and reproductive conditions of PCOS. In addition, the impaired mitochondrial functions were improved following MitoQ10 administration. Notably, western blot results suggested that this antioxidant reduced the expression levels of apoptosis-related proteins cytochrome c and B-cell lymphoma-2 (Bcl-2)-associated X protein, whereas the anti-apoptotic protein Bcl-extra large was increased following MitoQ10 treatment. Taken together, the data indicated that the MitoQ10 may have a beneficial favorable therapeutic effect on animals with PCOS-IR, most likely via the protection of mitochondrial functions and regulation of programmed cell death-related proteins.
Mutations in mitochondrial DNA (mtDNA) are one of the most important causes of hearing loss. Of these, the homoplasmic A1555G and C1494T mutations at the highly conserved decoding site of the 12S rRNA gene are well documented as being associated with either aminoglycoside-induced or nonsyndromic hearing loss in many families worldwide. Moreover, five mutations associated with nonsyndromic hearing loss have been identified in the tRNA(Ser(UCN)) gene: A7445G, 7472insC, T7505C, T7510C, and T7511C. Other mtDNA mutations associated with deafness are mainly located in tRNA and protein-coding genes. Failures in mitochondrial tRNA metabolism or protein synthesis were observed from cybrid cells harboring these primary mutations, thereby causing the mitochondrial dysfunctions responsible for deafness. This review article provides a detailed summary of mtDNA mutations that have been reported in deafness and further discusses the molecular mechanisms of these mtDNA mutations in deafness expression.
Background Total flavonoids content (TFC) is one of the most important quality indexes of Ginkgo biloba leaf, and it is concerned with total antioxidant activity. Near-infrared spectroscopy (NIR) method has showed its advantages in fast, accurate, qualitative, and quantitative analysis of various components in many quality control researches. In this study, a calibration model was built by partial least squares regression (PLSR) coupling with NIR spectrum to quantitatively analyze the TFC and total antioxidant activity of Ginkgo biloba leaf. Results During the model establishing, some spectrum pretreatment and outlier diagnosis methods were optimized to establish the final model. The coefficients of determination (R2) for TFC and total antioxidant activity prediction were 0.8863 and 0.8486, respectively; and the root mean square errors of prediction (RMSEP) were 2.203 mg/g and 0.2211 mM/g, respectively. Conclusion These results showed that NIR method combined with chemometrics is suitable for quantitative analysis of main components and their activities and might be applied to quality control of relevant products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.