Efficient Cu2ZnSnSe4 (CZTSe) solar cells were fabricated with a simple, environmentally friendly, and scalable synthetic method for Cu2ZnSnS4 (CZTS) nanocrystals. CZTS nanoparticles were mechanochemically synthesized from elemental precursors on a relatively large scale (∼20 g), during which no solvents or additives were used, thus alleviating the complex process of particle synthesis. An analysis of the time evolution of the crystalline phase and morphology of precursor powders revealed that the formation of the CZTS compound was completed in 0.5 h once initiated, suggesting that the mechanochemically induced self-propagating reaction prevails. CZTS ink was prepared by dispersing the as-synthesized nanoparticles in an environmentally benign solvent (160 mg mL(-1) in ethanol) without using any additives, after which it was cast onto Mo-coated glass substrates by a doctor-blade method. Subsequent reactive annealing at 560 °C under a Se-containing atmosphere resulted in substantial grain growth along with the nearly complete substitution of Se. The CZTSe solar cells therefrom exhibited power conversion efficiency levels as high as 6.1% (based on the active area, 0.44 cm(2)) with a relatively high open-circuit voltage (0.42 V) in comparison with the bandgap energy of 1.0 eV.
In this paper, we demonstrate a facile route to produce epoxy/carbon fiber composites providing continuous heat conduction pathway of Cu with a high degree of crystal perfection via electroplating, followed by rapid thermal annealing (RTA) treatment and compression molding. Copper shells on carbon fibers were coated through electroplating method and post-treated via RTA technique to reduce the degree of imperfection in the Cu crystal. The epoxy/Cu-plated carbon fiber composites with Cu shell of 12.0 vol % prepared via simple compression molding, revealed 18 times larger thermal conductivity (47.2 W m(-1) K(-1)) in parallel direction and 6 times larger thermal conductivity (3.9 W m(-1) K(-1)) in perpendicular direction than epoxy/carbon fiber composite. Our novel composites with RTA-treated carbon fiber/Cu core/shell hybrid showed heat conduction behavior of an excellent polymeric composite thermal conductor with continuous heat conduction pathway, comparable to theoretical values obtained from Hatta and Taya model.
Highly crystalline Fe2GeS4 nanocrystals were synthesized via a facile, solvent-free mechanochemical process. The post-annealed Fe2GeS4 nanocrystals showed an absorption edge at 1.43 eV and a PL emission at 1.41 eV.
Kesterite Cu 2 ZnSnSe 4 (CZTSe) thin films prepared by the selenization of mechanochemically synthesized Cu 2 ZnSnS 4 (CZTS) nanocrystals films are systematically investigated as a function of the annealing time in terms of the phase purity, microstructure, composition, and device characteristics. It is shown that selenization for an extended time does not cause a noticeable amount of Sn loss or segregation of Zn-rich layers. Thus, the prolonged annealing leads to improvements (reduction) in the shunt conductance, reverse saturation current, and diode ideality factor. However, it also leads to a deterioration of the series resistance, of which influence is turned out to overwhelm all of the aforementioned positive effects on the device performance.As a consequence, the CZTSe solar cell exhibits its highest efficiency (5.43%) at the shortest annealing time (10 min). Impedance spectroscopy is demonstrated to be of good use in detecting the change in the back contact of CZTSe solar cell during annealing. The impedance spectra of the CZTSe solar cells are analyzed in association with the microstructures of the back-contact electrodes, demonstrating that the increase in the series resistance is attributed to the formation of the resistive MoSe 2 layer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.