The endophytic fungi in different tissues of Artemisia annua was isolated and purified to explore their ecological distribution and tissue preference, and the extracellular enzyme activities of dominant endophytic fungi were determined to characterize the metabolic function of endophytic fungi. The results showed that a total of 67 endophytic fungi were obtained from Artemisia annua tissues. The number and species of endophytic fungi in different tissues were significantly different. The number, colonization rate (CR) and isolation rate (IR) of endophytic fungi in root were significantly higher than those of stem and leaf. The dominant endophytic fungi, diversity and similarity coefficient of endophytic fungi also showed significant difference among tissues. The extracellular enzyme activities of endophytic fungi in different tissues are significantly different. The enzyme activities of endophytic fungi isolated from root are significantly higher than those isolated from stem and leaf. The research results showed that the endophytic fungi in Artemisia annua had significant tissue preference, and the metabolic function of endophytic fungi showed significant difference among tissues. This will lay a foundation for further research, development and utilization of endophytic fungi, and also provide a theoretical basis for screening functional endophytic fungi in Artemisia annua.
Fungi are the key agents in litter decomposition in forest ecosystems. However, the specific roles of the interactions between different fungal species during litter decomposition process are unclear. To evaluate the interactions, two fungi strains with significantly different morphs were isolated from the soils of Quercus acutissima forest and Pinus massoniana forest, and inoculated in the litter powder of Quercus acutissima leaves and Pinus massoniana needles with grown separately and in coexistence equally through a microcosm experiment. The enzyme activities were determined as a proxy for microbial activities. The results showed that the degradative enzymes involved in litter decomposition showed varying dynamics pattern during the incubation period. The interactions between the two fungi strains are synergism, and benefit to each other according to enzyme activities, suggesting that a fungi strain growth was accelerated by the presence of other fungi strain during litter decomposition process. However, the interactions of the two fungi strains were bilateral antagonism inoculated in the litter powder of Quercus acutissima leaves according to cellobiohydrolase activities. The synergism, despite bilateral antagonism in an exceptional case, may be an important factor controlling the fungal colonization and growth on litter substrate. The results implied that more fungal species may accelerate litter decomposition rates due to their mutual cooperation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.