The restrictive measures implemented in response to the COVID-19 pandemic have triggered sudden massive changes to travel behaviors of people all around the world. This study examines the individual mobility patterns for all transport modes (walk, bicycle, motorcycle, car driven alone, car driven in company, bus, subway, tram, train, airplane) before and during the restrictions adopted in ten countries on six continents: Australia, Brazil, China, Ghana, India, Iran, Italy, Norway, South Africa and the United States. This cross-country study also aims at understanding the predictors of protective behaviors related to the transport sector and COVID-19. Findings hinge upon an online survey conducted in May 2020 (N = 9,394). The empirical results quantify tremendous disruptions for both commuting and non-commuting travels, highlighting substantial reductions in the frequency of all types of trips and use of all modes. In terms of potential virus spread, airplanes and buses are perceived to be the riskiest transport modes, while avoidance of public transport is consistently found across the countries. According to the Protection Motivation Theory, the study sheds new light on the fact that two indicators, namely income inequality, expressed as Gini index, and the reported number of deaths due to COVID-19 per 100,000 inhabitants, aggravate respondents’ perceptions. This research indicates that socio-economic inequality and morbidity are not only related to actual health risks, as well documented in the relevant literature, but also to the perceived risks. These findings document the global impact of the COVID-19 crisis as well as provide guidance for transportation practitioners in developing future strategies.
Pecan (Carya illinoinensis), as a popular nut tree, has been widely planted in China in recent years. Grafting is an important technique for its cultivation. For a successful grafting, graft union development generally involves the formation of callus and vascular bundles at the graft union. To explore the molecular mechanism of graft union development, we applied high throughput RNA sequencing to investigate the transcriptomic profiles of graft union at four timepoints (0 days, 8 days, 15 days, and 30 days) during the pecan grafting process. After de novo assembly, 83,693 unigenes were obtained, and 40,069 of them were annotated. A total of 12,180 differentially expressed genes were identified between by grafting. Genes involved in hormone signaling, cell proliferation, xylem differentiation, cell elongation, secondary cell wall deposition, programmed cell death, and reactive oxygen species (ROS) scavenging showed significant differential expression during the graft union developmental process. In addition, we found that the content of auxin, cytokinin, and gibberellin were accumulated at the graft unions during the grafting process. These results will aid in our understanding of successful grafting in the future.
A large number of microbes exist in the gut and they have the ability to process and utilize ingested food. It has been reported that their products are involved in colorectal cancer development. The molecular mechanisms which underlie the relationship between gut microbial products and CRC are still not fully understood. The role of some microbial products in CRC is particularly controversial. Elucidating the effects of gut microbiota products on CRC and their possible mechanisms is vital for CRC prevention and treatment. In this review, recent studies are examined in order to describe the contribution metabolites and toxicants which are produced by gut microbes make to CRC, primarily focusing on the involved molecular mechanisms.
Human beings cannot live without elastomers, which exist almost everywhere in human life nowadays. Although elastomers with a variety of features are developed for specific applications, a timeless topic is how to toughen them, because mechanical properties always determine the reliability and lifespan of the utilized elastomers. Toughening of a soft material has a long history and the main idea is widely accepted, i.e., building energy dissipation into the stretchy networks. Double network (DN) method is the most pioneering and representative practice of materials toughening, which is successfully applied to numerous hydrogel systems. Intensive studies on DN hydrogel systems are implemented and relevant reviews are well documented, whereas important reviews about DN elastomers are absent. In this review, recent progress on toughening elastomers using the DN strategy is reviewed. By reviewing the fabrication methods and relevant extensions, toughening mechanisms at different length scales, functionalities, and applications in sequence, it is shown how one polymer network plus another gives rise to a tough elastomer with superior mechanical properties. It is believed that this review can give some insight into existing DN elastomer systems and inspire the development of next‐generation tough soft materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.