A new series of pyrazinecarboxamide DGAT1 inhibitors was designed to address the need for a candidate drug with good potency, selectivity, and physical and DMPK properties combined with a low predicted dose in man. Rational design and optimization of this series led to the discovery of compound 30 (AZD7687), which met the project objectives for potency, selectivity, in particular over ACAT1, solubility, and preclinical PK profiles. This compound showed the anticipated excellent pharmacokinetic properties in human volunteers.
The mechanism-based risk for hyperkalemia has limited the use of mineralocorticoid receptor antagonists (MRAs) like eplerenone in cardio-renal diseases. Here, we describe the structure and property-driven lead generation and optimization, which resulted in identification of MR modulators (S)-1 and (S)-33. Both compounds were partial MRAs but still demonstrated equally efficacious organ protection as eplerenone after 4 weeks of treatment in uni-nephrectomized rats on high-salt diet and aldosterone infusion. Importantly, and in sharp contrast to eplerenone, this was achieved without substantial changes to the urine Na + /K + ratio after acute treatment in rat, which predicts a reduced risk for hyperkalemia. This work led to selection of (S)-1 (AZD9977) as the clinical candidate for treating MR-mediated cardio-renal diseases, including chronic kidney disease and heart failure. On the basis of our findings, we propose an empirical model for prediction of compounds with low risk of affecting the urinary Na + /K + ratio in vivo.
We demonstrate here a novel use of statistical tools to study intra- and inter-site assay variability of five early drug metabolism and pharmacokinetics in vitro assays over time. Firstly, a tool for process control is presented. It shows the overall assay variability but allows also the following of changes due to assay adjustments and can additionally highlight other, potentially unexpected variations. Secondly, we define the minimum discriminatory difference/ratio to support projects to understand how experimental values measured at different sites at a given time can be compared. Such discriminatory values are calculated for 3 month periods and followed over time for each assay. Again assay modifications, especially assay harmonization efforts, can be noted. Both the process control tool and the variability estimates are based on the results of control compounds tested every time an assay is run. Variability estimates for a limited set of project compounds were computed as well and found to be comparable. This analysis reinforces the need to consider assay variability in decision making, compound ranking and in silico modeling.
The aim of the study was to characterize the individual pharmacokinetics of (-)-R- and (+)-S-clevidipine following intravenous constant rate infusion of rac-clevidipine to essential hypertensive patients. Twenty patients received three out of five randomized treatments with clevidipine. The pharmacokinetics of the separate enantiomers were evaluated by compartmental analysis of blood concentrations vs. time curves using the population approach. The derived pharmacokinetic parameters were used to simulate the time for 50 and 90% postinfusion decline following various infusion times of rac-clevidipine. A two-compartment model was used to describe the dispositions of the enantiomers; there were only minor differences between the estimated pharmacokinetic parameters of the separate enantiomers. The mean blood clearance values of (-)-R- and (+)-S-clevidipine were 0.103 and 0.096 l/min/kg, and the corresponding volumes of distribution at steady state were 0.39 and 0.54 l/kg, respectively. The context-sensitive half-time was approximately 2 min regardless of stereochemical configuration, and a 90% decline in concentration was achieved approximately 8 min postinfusion for (-)-R-clevidipine and 11 min for (+)-S-clevidipine, following clinically relevant infusion times with clevidipine. In conclusion, both enantiomers are high-clearance compounds with similar blood clearance values. The volume of distribution for the enantiomers is slightly different, presumably due to differences in the protein binding. From a pharmacokinetic point of view, the use of a single enantiomer as an alternative to the racemic clevidipine will not offer any clinical advantages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.