Fluorescence two-dimensional differential gel electrophoresis (2-D DIGE*) is a new development in protein detection for two-dimensional gels. Using mouse liver homogenates (control and paracetamol (N-acetyl-p-aminophenol, APAP)-treated), we have determined the quantitative variation in the 2-D DIGE process and established statistically valid thresholds for assigning quantitative changes between samples. Thresholds were dependent on normalised spot volume, ranged from approximately 1.2 fold for large volume spots to 3.5 fold for small volume spots and were not markedly affected by the particular cyanine dye combination or by multiple operators carrying out the dye labelling reaction. To minimise the thresholds, substantial user editing was required when using ImageMaster 2D-Elite software. The difference thresholds were applied to the test system and quantitative protein differences were determined using replicate gels of pool samples and single gels from multiple individual animals (control vs treated in each gel). Throughout, the differences revealed with a particular cyanine dye combination were mirrored almost without exception when the dye combination was reversed. Both pool and individual sample analyses provided unique data to the study. The inter-animal response variability in inbred mice was approximately nine times that contributed by the 2-D DIGE process. A number of the most frequently observed protein changes resulting from APAP-treatment were identified by mass spectrometry. Several of these can be rationalised based on available data on the mechanism of APAP hepatotoxicity but others cannot, indicating that proteomics can provide further insights into the biochemical basis of APAP toxicity.
Fluorescence two-dimensional differential gel electrophoresis (2-D DIGE*) is a new development in protein detection for two-dimensional gels. Using mouse liver homogenates (control and paracetamol (N-acetyl-p-aminophenol, APAP)-treated), we have determined the quantitative variation in the 2-D DIGE process and established statistically valid thresholds for assigning quantitative changes between samples. Thresholds were dependent on normalised spot volume, ranged from approximately 1.2 fold for large volume spots to 3.5 fold for small volume spots and were not markedly affected by the particular cyanine dye combination or by multiple operators carrying out the dye labelling reaction. To minimise the thresholds, substantial user editing was required when using ImageMaster 2D-Elite software. The difference thresholds were applied to the test system and quantitative protein differences were determined using replicate gels of pool samples and single gels from multiple individual animals (control vs treated in each gel). Throughout, the differences revealed with a particular cyanine dye combination were mirrored almost without exception when the dye combination was reversed. Both pool and individual sample analyses provided unique data to the study. The inter-animal response variability in inbred mice was approximately nine times that contributed by the 2-D DIGE process. A number of the most frequently observed protein changes resulting from APAP-treatment were identified by mass spectrometry. Several of these can be rationalised based on available data on the mechanism of APAP hepatotoxicity but others cannot, indicating that proteomics can provide further insights into the biochemical basis of APAP toxicity.
Drug-induced liver injury (DILI) continues to be a major source of clinical attrition, precautionary warnings, and post-market withdrawal of drugs. Accordingly, there is a need for more predictive tools to assess hepatotoxicity risk in drug discovery. Three-dimensional (3D) spheroid hepatic cultures have emerged as promising tools to assess mechanisms of hepatotoxicity, as they demonstrate enhanced liver phenotype, metabolic activity, and stability in culture not attainable with conventional two-dimensional hepatic models. Increased sensitivity of these models to drug-induced cytotoxicity has been demonstrated with relatively small panels of hepatotoxicants. However, a comprehensive evaluation of these models is lacking. Here, the predictive value of 3D human liver microtissues (hLiMT) to identify known hepatotoxicants using a panel of 110 drugs with and without clinical DILI has been assessed in comparison to plated two-dimensional primary human hepatocytes (PHH). Compounds were treated long-term (14 days) in hLiMT and acutely (2 days) in PHH to assess drug-induced cytotoxicity over an 8-point concentration range to generate IC50 values. Regardless of comparing IC50 values or exposure-corrected margin of safety values, hLiMT demonstrated increased sensitivity in identifying known hepatotoxicants than PHH, while specificity was consistent across both assays. In addition, hLiMT out performed PHH in correctly classifying hepatotoxicants from different pharmacological classes of molecules. The hLiMT demonstrated sufficient capability to warrant exploratory liver injury biomarker investigation (miR-122, HMGB1, α-GST) in the cell-culture media. Taken together, this study represents the most comprehensive evaluation of 3D spheroid hepatic cultures up to now and supports their utility for hepatotoxicity risk assessment in drug discovery.Electronic supplementary materialThe online version of this article (doi:10.1007/s00204-017-2002-1) contains supplementary material, which is available to authorized users.
Idiosyncratic adverse drug reactions (IADRs) in humans can result in a broad range of clinically significant toxicities leading to attrition during drug development as well as postlicensing withdrawal or labeling. IADRs arise from both drug and patient related mechanisms and risk factors. Drug related risk factors, resulting from parent compound or metabolites, may involve multiple contributory mechanisms including organelle toxicity, effects related to compound disposition, and/or immune activation. In the current study, we evaluate an in vitro approach, which explored both cellular effects and covalent binding (CVB) to assess IADR risks for drug candidates using 36 drugs which caused different patterns and severities of IADRs in humans. The cellular effects were tested in an in vitro Panel of five assays which quantified (1) toxicity to THLE cells (SV40 T-antigen-immortalized human liver epithelial cells), which do not express P450s, (2) toxicity to a THLE cell line which selectively expresses P450 3A4, (3) cytotoxicity in HepG2 cells in glucose and galactose media, which is indicative of mitochondrial injury, (4) inhibition of the human bile salt export pump, BSEP, and (5) inhibition of the rat multidrug resistance associated protein 2, Mrp2. In addition, the CVB Burden was estimated by determining the CVB of radiolabeled compound to human hepatocytes and factoring in both the maximum prescribed daily dose and the fraction of metabolism leading to CVB. Combining the aggregated results from the in vitro Panel assays with the CVB Burden data discriminated, with high specificity (78%) and sensitivity (100%), between 27 drugs, which had severe or marked IADR concern, and 9 drugs, which had low IADR concern, we propose that this integrated approach has the potential to enable selection of drug candidates with reduced propensity to cause IADRs in humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.