Fluorescence two-dimensional differential gel electrophoresis (2-D DIGE*) is a new development in protein detection for two-dimensional gels. Using mouse liver homogenates (control and paracetamol (N-acetyl-p-aminophenol, APAP)-treated), we have determined the quantitative variation in the 2-D DIGE process and established statistically valid thresholds for assigning quantitative changes between samples. Thresholds were dependent on normalised spot volume, ranged from approximately 1.2 fold for large volume spots to 3.5 fold for small volume spots and were not markedly affected by the particular cyanine dye combination or by multiple operators carrying out the dye labelling reaction. To minimise the thresholds, substantial user editing was required when using ImageMaster 2D-Elite software. The difference thresholds were applied to the test system and quantitative protein differences were determined using replicate gels of pool samples and single gels from multiple individual animals (control vs treated in each gel). Throughout, the differences revealed with a particular cyanine dye combination were mirrored almost without exception when the dye combination was reversed. Both pool and individual sample analyses provided unique data to the study. The inter-animal response variability in inbred mice was approximately nine times that contributed by the 2-D DIGE process. A number of the most frequently observed protein changes resulting from APAP-treatment were identified by mass spectrometry. Several of these can be rationalised based on available data on the mechanism of APAP hepatotoxicity but others cannot, indicating that proteomics can provide further insights into the biochemical basis of APAP toxicity.
Fluorescence two-dimensional differential gel electrophoresis (2-D DIGE*) is a new development in protein detection for two-dimensional gels. Using mouse liver homogenates (control and paracetamol (N-acetyl-p-aminophenol, APAP)-treated), we have determined the quantitative variation in the 2-D DIGE process and established statistically valid thresholds for assigning quantitative changes between samples. Thresholds were dependent on normalised spot volume, ranged from approximately 1.2 fold for large volume spots to 3.5 fold for small volume spots and were not markedly affected by the particular cyanine dye combination or by multiple operators carrying out the dye labelling reaction. To minimise the thresholds, substantial user editing was required when using ImageMaster 2D-Elite software. The difference thresholds were applied to the test system and quantitative protein differences were determined using replicate gels of pool samples and single gels from multiple individual animals (control vs treated in each gel). Throughout, the differences revealed with a particular cyanine dye combination were mirrored almost without exception when the dye combination was reversed. Both pool and individual sample analyses provided unique data to the study. The inter-animal response variability in inbred mice was approximately nine times that contributed by the 2-D DIGE process. A number of the most frequently observed protein changes resulting from APAP-treatment were identified by mass spectrometry. Several of these can be rationalised based on available data on the mechanism of APAP hepatotoxicity but others cannot, indicating that proteomics can provide further insights into the biochemical basis of APAP toxicity.
Two-dimensional difference gel electrophoresis (2-D DIGE) enables an increased confidence in detection of protein differences. However, due to the nature of the minimal labelling where only approximately 5% of a given protein is labelled, spots cannot be directly excised for mass spectrometry (MS) analysis and detection sensitivity could be further enhanced. Amersham Biosciences have developed a second set of CyDye DIGE Cy 3 and Cy5 dyes, which aim to overcome these limitations through saturation-labelling of cysteine residues. The dyes were evaluated in relation to their sensitivity and dynamic range, their useability as multiplexing reagents and the possibility of direct spot picking from saturation-labelled gels for MS analysis. The saturation-labelling dyes were superior in sensitivity to their minimal-labelling counterparts, silver stain and Sypro Ruby, however, the resulting 2-D spot pattern was significantly altered from that of unlabelled or minimal-labelled protein. The dyes were found to be useful as multiplexing reagents although preferential labelling of proteins with one dye over another was observed but was controlled for through experimental design. Protein identities were successfully obtained from material directly excised from saturation-labelled gels eliminating the need for post-stained preparative gels.
Administration of high doses of the histamine antagonist methapyrilene to rats causes periportal liver necrosis. The mechanism of toxicity is ill-defined and here we have utilized an integrated systems approach to understanding the toxic mechanisms by combining proteomics, metabonomics by 1 H NMR spectroscopy and genomics by microarray gene expression profiling. Male rats were dosed with methapyrilene for 3 days at 150 mg/kg/day, which was sufficient to induce liver necrosis, or a subtoxic dose of 50 mg/kg/day. Urine was collected over 24 h each day, while blood and liver tissues were obtained at 2 h after the final dose. The resulting data further define the changes that occur in signal transduction and metabolic pathways during methapyrilene hepatotoxicity, revealing modification of expression levels of genes and proteins associated with oxidative stress and a change in energy usage that is reflected in both gene/protein expression patterns and metabolites. The difficulties of combining and interpreting multiomic data are considered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.