Let [Formula: see text] and [Formula: see text] be [Formula: see text]-complexes with [Formula: see text] an integer such that [Formula: see text] has finite Gorenstein projective dimension and [Formula: see text] has finite Gorenstein injective dimension. We define the [Formula: see text]th Gorenstein cohomology groups [Formula: see text] [Formula: see text] via a strict Gorenstein precover [Formula: see text] of [Formula: see text] and a strict Gorenstein preenvelope [Formula: see text] of [Formula: see text]. Using Gaussian binomial coefficients we show that there exists an isomorphism [Formula: see text] which extends the balance result of Liu [Relative cohomology of complexes. J. Algebra 502 (2018) 79–97] to the [Formula: see text]-complex case.
In this article, we investigate the stability of Cartan-Eilenberg Gorenstein categories. To this end, we introduce and study the concept of two-degree Cartan-Eilenberg W -Gorenstein complexes. We prove that a complex C is two-degree Cartan-Eilenberg W -Gorenstein if and only if C is Cartan-Eilenberg W -Gorenstein. As applications, we show that a complex C is two-degree C-E Gorenstein projective if and only if C is C-E Gorenstein projective. Moreover, we obtain similar results for some known modules such as W-Gorenstein projective modules and V-Gorenstein projective modules.
In this article, we extend the notion of FP-injective modules to that of Cartan–Eilenberg complexes. We show that a complex $C$ is Cartan–Eilenberg FP-injective if and only if $C$ and $\text{Z}(C)$ are complexes consisting of FP-injective modules over right coherent rings. As an application, coherent rings are characterized in various ways, using Cartan–Eilenberg FP-injective and Cartan–Eilenberg flat complexes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.