Let [Formula: see text] be an associative ring with identity. The purpose of this paper is to establish relative cohomology theories based on cotorsion pairs in the setting of unbounded complexes of modules over [Formula: see text]. Let [Formula: see text] be a complete hereditary cotorsion pair in [Formula: see text]-Mod. Then [Formula: see text] and [Formula: see text] are complete hereditary cotorsion pairs in the category of [Formula: see text]-complexes. For any complexes [Formula: see text] and [Formula: see text] and any [Formula: see text], we define the [Formula: see text]th relative cohomology groups [Formula: see text] and [Formula: see text] by special [Formula: see text]-precovers of [Formula: see text] and by special [Formula: see text]-preenvelopes of [Formula: see text], respectively. They are common generalizations of absolute cohomology groups and Gorenstein cohomology groups of complexes. Some induced exact sequences concerning relative cohomology groups are considered. It is also shown that the relative cohomology functor of complexes we considered is balanced.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.